我是一个老派的MySQL用户,总是更喜欢JOIN而不是子查询。但是现在每个人都用子查询,我讨厌它;我不知道为什么。

我缺乏理论知识来判断是否有任何不同。子查询是否与JOIN一样好,因此没有什么可担心的?


当前回答

MySQL版本:5.5.28-0ubuntu0.12.04.2-log

在我的印象中,JOIN总是比MySQL中的子查询更好,但EXPLAIN是更好的判断方式。下面是一个子查询比join更好的例子。

这是我的查询与3个子查询:

EXPLAIN SELECT vrl.list_id,vrl.ontology_id,vrl.position,l.name AS list_name, vrlih.position AS previous_position, vrl.moved_date 
FROM `vote-ranked-listory` vrl 
INNER JOIN lists l ON l.list_id = vrl.list_id 
INNER JOIN `vote-ranked-list-item-history` vrlih ON vrl.list_id = vrlih.list_id AND vrl.ontology_id=vrlih.ontology_id AND vrlih.type='PREVIOUS_POSITION' 
INNER JOIN list_burial_state lbs ON lbs.list_id = vrl.list_id AND lbs.burial_score < 0.5 
WHERE vrl.position <= 15 AND l.status='ACTIVE' AND l.is_public=1 AND vrl.ontology_id < 1000000000 
 AND (SELECT list_id FROM list_tag WHERE list_id=l.list_id AND tag_id=43) IS NULL 
 AND (SELECT list_id FROM list_tag WHERE list_id=l.list_id AND tag_id=55) IS NULL 
 AND (SELECT list_id FROM list_tag WHERE list_id=l.list_id AND tag_id=246403) IS NOT NULL 
ORDER BY vrl.moved_date DESC LIMIT 200;

解释说明:

+----+--------------------+----------+--------+-----------------------------------------------------+--------------+---------+-------------------------------------------------+------+--------------------------+
| id | select_type        | table    | type   | possible_keys                                       | key          | key_len | ref                                             | rows | Extra                    |
+----+--------------------+----------+--------+-----------------------------------------------------+--------------+---------+-------------------------------------------------+------+--------------------------+
|  1 | PRIMARY            | vrl      | index  | PRIMARY                                             | moved_date   | 8       | NULL                                            |  200 | Using where              |
|  1 | PRIMARY            | l        | eq_ref | PRIMARY,status,ispublic,idx_lookup,is_public_status | PRIMARY      | 4       | ranker.vrl.list_id                              |    1 | Using where              |
|  1 | PRIMARY            | vrlih    | eq_ref | PRIMARY                                             | PRIMARY      | 9       | ranker.vrl.list_id,ranker.vrl.ontology_id,const |    1 | Using where              |
|  1 | PRIMARY            | lbs      | eq_ref | PRIMARY,idx_list_burial_state,burial_score          | PRIMARY      | 4       | ranker.vrl.list_id                              |    1 | Using where              |
|  4 | DEPENDENT SUBQUERY | list_tag | ref    | list_tag_key,list_id,tag_id                         | list_tag_key | 9       | ranker.l.list_id,const                          |    1 | Using where; Using index |
|  3 | DEPENDENT SUBQUERY | list_tag | ref    | list_tag_key,list_id,tag_id                         | list_tag_key | 9       | ranker.l.list_id,const                          |    1 | Using where; Using index |
|  2 | DEPENDENT SUBQUERY | list_tag | ref    | list_tag_key,list_id,tag_id                         | list_tag_key | 9       | ranker.l.list_id,const                          |    1 | Using where; Using index |
+----+--------------------+----------+--------+-----------------------------------------------------+--------------+---------+-------------------------------------------------+------+--------------------------+

使用join的相同查询是:

EXPLAIN SELECT vrl.list_id,vrl.ontology_id,vrl.position,l.name AS list_name, vrlih.position AS previous_position, vrl.moved_date 
FROM `vote-ranked-listory` vrl 
INNER JOIN lists l ON l.list_id = vrl.list_id 
INNER JOIN `vote-ranked-list-item-history` vrlih ON vrl.list_id = vrlih.list_id AND vrl.ontology_id=vrlih.ontology_id AND vrlih.type='PREVIOUS_POSITION' 
INNER JOIN list_burial_state lbs ON lbs.list_id = vrl.list_id AND lbs.burial_score < 0.5 
LEFT JOIN list_tag lt1 ON lt1.list_id = vrl.list_id AND lt1.tag_id = 43 
LEFT JOIN list_tag lt2 ON lt2.list_id = vrl.list_id AND lt2.tag_id = 55 
INNER JOIN list_tag lt3 ON lt3.list_id = vrl.list_id AND lt3.tag_id = 246403 
WHERE vrl.position <= 15 AND l.status='ACTIVE' AND l.is_public=1 AND vrl.ontology_id < 1000000000 
AND lt1.list_id IS NULL AND lt2.tag_id IS NULL 
ORDER BY vrl.moved_date DESC LIMIT 200;

输出为:

+----+-------------+-------+--------+-----------------------------------------------------+--------------+---------+---------------------------------------------+------+----------------------------------------------+
| id | select_type | table | type   | possible_keys                                       | key          | key_len | ref                                         | rows | Extra                                        |
+----+-------------+-------+--------+-----------------------------------------------------+--------------+---------+---------------------------------------------+------+----------------------------------------------+
|  1 | SIMPLE      | lt3   | ref    | list_tag_key,list_id,tag_id                         | tag_id       | 5       | const                                       | 2386 | Using where; Using temporary; Using filesort |
|  1 | SIMPLE      | l     | eq_ref | PRIMARY,status,ispublic,idx_lookup,is_public_status | PRIMARY      | 4       | ranker.lt3.list_id                          |    1 | Using where                                  |
|  1 | SIMPLE      | vrlih | ref    | PRIMARY                                             | PRIMARY      | 4       | ranker.lt3.list_id                          |  103 | Using where                                  |
|  1 | SIMPLE      | vrl   | ref    | PRIMARY                                             | PRIMARY      | 8       | ranker.lt3.list_id,ranker.vrlih.ontology_id |   65 | Using where                                  |
|  1 | SIMPLE      | lt1   | ref    | list_tag_key,list_id,tag_id                         | list_tag_key | 9       | ranker.lt3.list_id,const                    |    1 | Using where; Using index; Not exists         |
|  1 | SIMPLE      | lbs   | eq_ref | PRIMARY,idx_list_burial_state,burial_score          | PRIMARY      | 4       | ranker.vrl.list_id                          |    1 | Using where                                  |
|  1 | SIMPLE      | lt2   | ref    | list_tag_key,list_id,tag_id                         | list_tag_key | 9       | ranker.lt3.list_id,const                    |    1 | Using where; Using index                     |
+----+-------------+-------+--------+-----------------------------------------------------+--------------+---------+---------------------------------------------+------+----------------------------------------------+

rows列的比较表明了差异,使用join的查询使用的是using temporary;使用filesort。

当然,当我运行这两个查询时,第一个查询在0.02秒内完成,第二个查询甚至在1分钟后都没有完成,所以EXPLAIN正确地解释了这些查询。

如果我在list_tag表上没有INNER JOIN,即如果我删除

AND (SELECT list_id FROM list_tag WHERE list_id=l.list_id AND tag_id=246403) IS NOT NULL  

从第一个查询和相应的:

INNER JOIN list_tag lt3 ON lt3.list_id = vrl.list_id AND lt3.tag_id = 246403

从第二个查询开始,那么EXPLAIN为两个查询返回相同的行数,并且这两个查询的运行速度相同。

其他回答

子查询通常用于将单行作为原子值返回,不过它们也可以用于用IN关键字比较多行之间的值。在SQL语句中几乎任何有意义的地方都允许使用它们,包括目标列表、WHERE子句等等。一个简单的子查询可以用作搜索条件。例如,在一对表之间:

SELECT title 
FROM books 
WHERE author_id = (
    SELECT id 
    FROM authors 
    WHERE last_name = 'Bar' AND first_name = 'Foo'
);

注意,在子查询的结果上使用普通值操作符要求只返回一个字段。如果你想检查一个值是否存在于一组其他值中,请使用in:

SELECT title 
FROM books 
WHERE author_id IN (
    SELECT id FROM authors WHERE last_name ~ '^[A-E]'
);

这显然不同于LEFT-JOIN,你只是想连接表a和表B的东西,即使连接条件在表B中没有找到任何匹配的记录,等等。

如果你只是担心速度,你必须检查你的数据库,写一个好的查询,看看是否有显著的性能差异。

子查询能够动态地计算聚合函数。 例如,找到这本书的最低价格,并得到所有以这个价格出售的书。 1)使用子查询:

SELECT titles, price
FROM Books, Orders
WHERE price = 
(SELECT MIN(price)
 FROM Orders) AND (Books.ID=Orders.ID);

2)使用join

SELECT MIN(price)
     FROM Orders;
-----------------
2.99

SELECT titles, price
FROM Books b
INNER JOIN  Orders o
ON b.ID = o.ID
WHERE o.price = 2.99;

我不是关系数据库专家,所以对此持保留态度。

子查询与连接的一般思想是较大查询的求值路径。

为了执行较大的查询,必须首先执行每个子查询,然后将结果集存储为与较大查询交互的临时表。

这个临时表没有索引,因此,任何比较都需要扫描整个结果集。

相反,当您使用连接时,所有索引都在使用中,因此,比较需要遍历索引树(或哈希表),这在速度方面成本要低得多。

现在,我不知道最流行的关系引擎的新版本是否在反向执行求值,只是将必要的元素加载到临时表中,作为优化方法。

现在,许多dbs都可以优化子查询和连接。因此,您只需使用explain检查您的查询,看看哪个更快。如果在性能上没有太大的差异,我更喜欢使用子查询,因为它们简单,更容易理解。

只有当第二个连接表的数据明显多于主表时,才会出现这种差异。我有过这样的经历……

我们有一个用户表,有10万个条目,他们的会员数据(友谊)大约有30万个条目。这是一个join语句,目的是获取好友及其数据,但有很大的延迟。但是当成员表中只有少量数据时,它工作得很好。一旦我们将其更改为使用子查询,它就可以正常工作。

但与此同时,连接查询正在处理比主表拥有更少条目的其他表。

所以我认为连接和子查询语句工作得很好,这取决于数据和情况。