下面的位运算符在现实世界中有哪些用例?
和 XOR 不 或 左/右转
下面的位运算符在现实世界中有哪些用例?
和 XOR 不 或 左/右转
当前回答
我将它们用于多选择选项,这样我只存储一个值,而不是10个或更多
其他回答
& =和: 屏蔽掉特定的位。 您正在定义应该显示的特定位 或者不显示。0x0 & x将清除字节中的所有位,而0xFF不会改变x。 0x0F将显示较低位置的位。
转换: 要将较短的变量转换为具有位标识的较长的变量,必须调整位,因为int类型中的-1是0xFFFFFFFF,而long类型中的-1是0xffffffffffffffffff。为了保护 转换后应用掩码的标识。
| =或 位设置。如果已经设置了位,则位将独立设置。许多数据结构(位字段)有IS_HSET = 0, IS_VSET = 1这样的标志,可以独立设置。 要设置标志,您应用IS_HSET | IS_VSET(在C和汇编中,这是非常方便阅读的)
^ = XOR 找出相同或不同的部分。
~ =不 比特翻转。
可以证明,所有可能的局部位操作都可以通过这些操作来实现。 如果你愿意,你可以通过位操作来实现ADD指令。
以下是一些妙招:
http://www.ugcs.caltech.edu/~wnoise/base2.html http://www.jjj.de/bitwizardry/bitwizardrypage.html
我不认为这是按位计算的,但是ruby的Array通过普通整数按位操作符定义了集合操作。因此[1,2,4]&[1,2,3]# =>[1,2]。对于a ^ b# =>集差值和| b# =>并集也是如此。
一个非常具体的例子,但我用它们让我的数独求解器运行得更快(我和一个朋友进行了比赛)
每一列、行和3x3都表示为一个无符号整数,当我设置数字时,我会为相关列、行和3x3平方中设置的数字标记适当的位。
这样就很容易看到我可以在给定的正方形中放置什么可能的数字,因为我将右边的列、行和3x3的正方形放在一起,然后不这样做,留下一个表示给定位置可能的合法值的掩码。
希望大家能理解。
Bit fields (flags) They're the most efficient way of representing something whose state is defined by several "yes or no" properties. ACLs are a good example; if you have let's say 4 discrete permissions (read, write, execute, change policy), it's better to store this in 1 byte rather than waste 4. These can be mapped to enumeration types in many languages for added convenience. Communication over ports/sockets Always involves checksums, parity, stop bits, flow control algorithms, and so on, which usually depend on the logic values of individual bytes as opposed to numeric values, since the medium may only be capable of transmitting one bit at a time. Compression, Encryption Both of these are heavily dependent on bitwise algorithms. Look at the deflate algorithm for an example - everything is in bits, not bytes. Finite State Machines I'm speaking primarily of the kind embedded in some piece of hardware, although they can be found in software too. These are combinatorial in nature - they might literally be getting "compiled" down to a bunch of logic gates, so they have to be expressed as AND, OR, NOT, etc. Graphics There's hardly enough space here to get into every area where these operators are used in graphics programming. XOR (or ^) is particularly interesting here because applying the same input a second time will undo the first. Older GUIs used to rely on this for selection highlighting and other overlays, in order to eliminate the need for costly redraws. They're still useful in slow graphics protocols (i.e. remote desktop).
这些只是我最先想到的几个例子——这不是一个详尽的清单。
一个数x是2的幂吗?(例如,在计数器递增的算法中很有用,并且一个操作只执行对数次)
(x & (x - 1)) == 0
整数x的最高位是哪位?(例如,这可以用来找出比x大的2的最小次幂)
x |= (x >> 1);
x |= (x >> 2);
x |= (x >> 4);
x |= (x >> 8);
x |= (x >> 16);
return x - (x >>> 1); // ">>>" is unsigned right shift
整数x的最小1位是哪一位?(帮助找出能被2整除的次数。)
x & -x