考虑以下代码:
0.1 + 0.2 == 0.3 -> false
0.1 + 0.2 -> 0.30000000000000004
为什么会出现这些错误?
考虑以下代码:
0.1 + 0.2 == 0.3 -> false
0.1 + 0.2 -> 0.30000000000000004
为什么会出现这些错误?
当前回答
浮点数的陷阱是它们看起来像十进制,但它们是二进制的。
2的唯一素因子是2,而10的素因子为2和5。这样做的结果是,每一个可以完全写成二进制分数的数字也可以完全写成十进制分数,但只有一部分可以写成十进制分数的数字可以写成二进制分数。
浮点数本质上是一个有效位数有限的二进制分数。如果你超过这些有效数字,那么结果将被四舍五入。
当您在代码中键入文字或调用函数将浮点数解析为字符串时,它需要一个十进制数,并将该十进制数的二进制近似值存储在变量中。
当您打印浮点数或调用函数将浮点数转换为字符串时,它将打印浮点数的十进制近似值。可以将二进制数字精确地转换为十进制,但在转换为字符串*时,我所知道的任何语言都不会默认这样做。一些语言使用固定数量的有效数字,其他语言使用最短的字符串,该字符串将“往返”返回到相同的浮点值。
*Python在将浮点数转换为“decimal.decimal”时确实会进行精确的转换。这是我所知道的获得浮点数的精确十进制等效值的最简单方法。
其他回答
想象一下,以10为基数,例如8位数的精度工作。您检查是否
1/3 + 2 / 3 == 1
并了解到这返回错误。为什么?好吧,作为真实的数字
1/3=0.333….和2/3=0.666。。。。
在小数点后八位截断,我们得到
0.33333333 + 0.66666666 = 0.99999999
当然,这与1.00000000正好相差0.00000001。
具有固定位数的二进制数的情况完全类似。作为实数,我们有
1/10=0.0001100110011001100…(底座2)
and
1/5=0.00111001100110011001…(底座2)
如果我们把这些截成七位
0.0001100 + 0.0011001 = 0.0100101
而另一方面,
3/10=0.010011001100110011…(基数2)
被截断为七位的值为0.0100110,两者相差0.0000001。
确切的情况稍显微妙,因为这些数字通常以科学符号存储。因此,例如,我们可以将其存储为1.10011*2^-4,而不是将1/10存储为0.0001100,这取决于我们为指数和尾数分配了多少位。这会影响计算的精度位数。
结果是,由于这些舍入错误,您根本不想在浮点数上使用==。相反,您可以检查它们的差值的绝对值是否小于某个固定的小数字。
我的答案很长,所以我把它分成了三部分。因为这个问题是关于浮点数学的,所以我把重点放在了机器的实际功能上。我还将其指定为双精度(64位),但该参数同样适用于任何浮点运算。
序言
IEEE 754双精度二进制浮点格式(binary64)数字表示以下形式的数字
值=(-1)^s*(1.m51m50…m2m1m0)2*2e-1023
64位:
第一位是符号位:如果数字为负,则为1,否则为0。接下来的11位是指数,偏移1023。换句话说,在从双精度数字中读取指数位之后,必须减去1023以获得2的幂。剩下的52位是有效位(或尾数)。在尾数中,“隐含”1。由于任何二进制值的最高有效位为1,因此总是省略2。
1-IEEE 754允许有符号零的概念-+0和-0被不同地对待:1/(+0)是正无穷大;1/(-0)是负无穷大。对于零值,尾数和指数位均为零。注意:零值(+0和-0)未明确归为非标准2。
2-非正规数的情况并非如此,其偏移指数为零(以及隐含的0)。非正规双精度数的范围为dmin≤|x|≤dmax,其中dmin(最小的可表示非零数)为2-1023-51(≈4.94*10-324),dmax(最大的非正规数,其尾数完全由1组成)为2-1023+1-21-23-51(≈2.225*10-308)。
将双精度数字转换为二进制
存在许多在线转换器来将双精度浮点数转换为二进制(例如,在binaryconvert.com),但这里有一些示例C#代码来获得双精度数字的IEEE 754表示(我用冒号(:)分隔这三个部分:
public static string BinaryRepresentation(double value)
{
long valueInLongType = BitConverter.DoubleToInt64Bits(value);
string bits = Convert.ToString(valueInLongType, 2);
string leadingZeros = new string('0', 64 - bits.Length);
string binaryRepresentation = leadingZeros + bits;
string sign = binaryRepresentation[0].ToString();
string exponent = binaryRepresentation.Substring(1, 11);
string mantissa = binaryRepresentation.Substring(12);
return string.Format("{0}:{1}:{2}", sign, exponent, mantissa);
}
开门见山:最初的问题
(对于TL;DR版本,跳到底部)
卡托·约翰斯顿(提问者)问为什么0.1+0.2!=0.3.
以二进制(用冒号分隔三个部分)编写,IEEE 754值表示为:
0.1 => 0:01111111011:1001100110011001100110011001100110011001100110011010
0.2 => 0:01111111100:1001100110011001100110011001100110011001100110011010
请注意,尾数由0011的重复数字组成。这是为什么计算有任何错误的关键-0.1、0.2和0.3不能用二进制精确地表示在有限数量的二进制位中,任何超过1/9、1/3或1/7的二进制位都可以用十进制数字精确地表示。
还要注意,我们可以将指数的幂减小52,并将二进制表示中的点向右移动52位(非常类似10-3*1.23==10-5*123)。这使我们能够将二进制表示表示为它以a*2p形式表示的精确值。其中“a”是整数。
将指数转换为十进制、删除偏移量并重新添加隐含的1(在方括号中)、0.1和0.2为:
0.1 => 2^-4 * [1].1001100110011001100110011001100110011001100110011010
0.2 => 2^-3 * [1].1001100110011001100110011001100110011001100110011010
or
0.1 => 2^-56 * 7205759403792794 = 0.1000000000000000055511151231257827021181583404541015625
0.2 => 2^-55 * 7205759403792794 = 0.200000000000000011102230246251565404236316680908203125
要添加两个数字,指数必须相同,即:
0.1 => 2^-3 * 0.1100110011001100110011001100110011001100110011001101(0)
0.2 => 2^-3 * 1.1001100110011001100110011001100110011001100110011010
sum = 2^-3 * 10.0110011001100110011001100110011001100110011001100111
or
0.1 => 2^-55 * 3602879701896397 = 0.1000000000000000055511151231257827021181583404541015625
0.2 => 2^-55 * 7205759403792794 = 0.200000000000000011102230246251565404236316680908203125
sum = 2^-55 * 10808639105689191 = 0.3000000000000000166533453693773481063544750213623046875
由于和的形式不是2n*1.{bbb},我们将指数增加1,并移动小数(二进制)点以获得:
sum = 2^-2 * 1.0011001100110011001100110011001100110011001100110011(1)
= 2^-54 * 5404319552844595.5 = 0.3000000000000000166533453693773481063544750213623046875
现在尾数中有53位(第53位在上一行的方括号中)。IEEE 754的默认舍入模式是“舍入到最近”,即如果数字x介于两个值a和b之间,则选择最低有效位为零的值。
a = 2^-54 * 5404319552844595 = 0.299999999999999988897769753748434595763683319091796875
= 2^-2 * 1.0011001100110011001100110011001100110011001100110011
x = 2^-2 * 1.0011001100110011001100110011001100110011001100110011(1)
b = 2^-2 * 1.0011001100110011001100110011001100110011001100110100
= 2^-54 * 5404319552844596 = 0.3000000000000000444089209850062616169452667236328125
注意,a和b仅在最后一位不同。。。0011 + 1 = ...0100。在这种情况下,最低有效位为零的值为b,因此总和为:
sum = 2^-2 * 1.0011001100110011001100110011001100110011001100110100
= 2^-54 * 5404319552844596 = 0.3000000000000000444089209850062616169452667236328125
而0.3的二进制表示是:
0.3 => 2^-2 * 1.0011001100110011001100110011001100110011001100110011
= 2^-54 * 5404319552844595 = 0.299999999999999988897769753748434595763683319091796875
其仅与0.1和0.2之和的二进制表示相差2-54。
0.1和0.2的二进制表示是IEEE 754允许的数字的最精确表示。由于默认舍入模式,添加这些表示会导致一个仅在最低有效位不同的值。
TL;博士
将0.1+0.2写入IEEE 754二进制表示(用冒号分隔三个部分),并将其与0.3进行比较,这是(我将不同的位放在方括号中):
0.1 + 0.2 => 0:01111111101:0011001100110011001100110011001100110011001100110[100]
0.3 => 0:01111111101:0011001100110011001100110011001100110011001100110[011]
转换回十进制,这些值为:
0.1 + 0.2 => 0.300000000000000044408920985006...
0.3 => 0.299999999999999988897769753748...
与原始值相比,差异正好为2-54,约为5.5511151231258×10-17(对于许多应用)。
比较浮点数的最后几位本来就很危险,任何读过著名的《每一位计算机科学家都应该知道的关于浮点运算》(该书涵盖了这个答案的所有主要部分)的人都会知道。
大多数计算器使用额外的保护数字来解决这个问题,这就是0.1+0.2如何给出0.3:最后几位是四舍五入的。
其实很简单。当你有一个基数为10的系统(像我们的系统)时,它只能表示使用基数素因子的分数。10的主要因子是2和5。因此,1/2、1/4、1/5、1/8和1/10都可以清晰地表达,因为分母都使用10的素因子。相比之下,1/3、1/6和1/7都是重复小数,因为它们的分母使用3或7的素因子。在二进制(或基数2)中,唯一的素因子是2。所以你只能清楚地表达分数,它只包含2作为素因子。在二进制中,1/2、1/4、1/8都可以清晰地表示为小数。而1/5或1/10将是重复小数。因此,0.1和0.2(1/10和1/5)虽然在以10为基数的系统中是干净的小数,但在计算机运行的以2为基数的体系中是重复的小数。当你对这些重复的小数进行数学运算时,当你将计算机的以2(二进制)为基数的数字转换为更易于人类阅读的以10为基础的数字时,你最终会留下剩余部分。
从…起https://0.30000000000000004.com/
浮点舍入错误。由于缺少5的素因子,0.1在基-2中不能像在基-10中那样精确地表示。正如1/3以十进制表示需要无限位数,但以3为基数表示为“0.1”,0.1以2为基数表示,而以10为基数不表示。计算机没有无限的内存。
已经发布了很多好的答案,但我想再补充一个。
并非所有数字都可以通过浮点数/双精度表示例如,在IEEE754浮点标准中,数字“0.2”将以单精度表示为“0.200000003”。
用于在引擎盖下存储实数的模型将浮点数表示为
即使您可以轻松键入0.2,FLT_RADIX和DBL_RADIX都是2;对于使用“IEEE二进制浮点运算标准(ISO/IEC Std 754-1985)”的带有FPU的计算机,不是10。
所以准确地表示这些数字有点困难。即使在没有任何中间计算的情况下显式指定此变量。