考虑以下代码:

0.1 + 0.2 == 0.3  ->  false
0.1 + 0.2         ->  0.30000000000000004

为什么会出现这些错误?


当前回答

我刚刚看到了关于浮点数的有趣问题:

考虑以下结果:

error = (2**53+1) - int(float(2**53+1))
>>> (2**53+1) - int(float(2**53+1))
1

当2**53+1时,我们可以清楚地看到一个断点——直到2**53,所有的工作都正常。

>>> (2**53) - int(float(2**53))
0

发生这种情况的原因是双精度二进制:IEEE 754双精度二进制浮点格式:binary64

从维基百科的双精度浮点格式页面:

双精度二进制浮点是PC上常用的格式,因为它的范围比单精度浮点更广,尽管它的性能和带宽成本很高。与单精度浮点格式一样,与相同大小的整数格式相比,它缺少整数的精度。它通常简称为double。IEEE 754标准规定二进制64具有:符号位:1位指数:11位有效精度:53位(显式存储52位)具有给定偏置指数和52位分数的给定64位双精度数据假设的实际值为或

感谢@aguest向我指出了这一点。

其他回答

这里的大多数答案都用非常枯燥的技术术语来解决这个问题。我想用正常人能够理解的方式来解决这个问题。

想象一下,你正试图把披萨切成薄片。你有一个机器人披萨切割机,可以将披萨切成两半。它可以将整个披萨减半,也可以将现有的披萨减半,但无论如何,减半总是准确的。

那台披萨切割机动作非常精细,如果你从一整块披萨开始,然后将其减半,然后继续每次将最小的披萨片减半,你可以在披萨片太小甚至无法实现高精度功能之前,将其减半53次。此时,您不能再将非常薄的切片减半,但必须按原样包含或排除它。

现在,你如何将所有的切片以这样一种方式分割,使其达到披萨的十分之一(0.1)或五分之一(0.2)?真的想一想,试着解决它。如果你手边有一个神话般的精密披萨切割机,你甚至可以尝试使用真正的披萨


当然,大多数有经验的程序员都知道真正的答案,那就是,无论你切得多细,都无法用这些切片拼凑出十分之一或五分之一的披萨。你可以做一个非常好的近似值,如果你把0.1的近似值和0.2的近似值相加,你会得到非常好的0.3的近似值。

对于双精度数字(允许您将披萨减半53次的精度),小于或大于0.1的数字分别为0.09999999999999999167332731531132594682276248931884765625和0.1000000000000000055511151231257827021181583404541015625。后者比前者更接近0.1,因此,如果输入值为0.1,数字解析器将倾向于后者。

(这两个数字之间的区别是“最小切片”,我们必须决定是否包含,这会引入向上的偏差,或者排除,这会带来向下的偏差。最小切片的技术术语是ulp。)

在0.2的情况下,数字都是相同的,只是放大了2倍。同样,我们赞成略高于0.2的值。

注意,在这两种情况下,0.1和0.2的近似值都有轻微的向上偏差。如果我们加上足够多的这些偏差,它们会将数字推离我们想要的越来越远,事实上,在0.1+0.2的情况下,偏差足够高,从而导致的数字不再是最接近0.3的数字。

特别是,0.1+0.2实际上是0.1000000000000000055511151231257827021181583404541015625+0.0200000000000000011102230246251565404236316680908203125=0.30000000000000000444089209850062616169452667236328125,而最接近0.3的数字实际上是0.29999999999988897769753748434595763683319091796875。


另外,一些编程语言还提供了披萨切割机,可以将披萨切成十分之一。虽然这种披萨切刀并不常见,但如果你有机会切到一个,那么你应该在切到十分之一或五分之一的披萨片非常重要的时候使用它。

(最初发布在Quora上。)

它被打破的方式与你在小学学习并每天使用的十进制(以10为基础)表示法完全相同,只是以2为基础。

要理解,请考虑将1/3表示为十进制值。这是不可能做到的!世界将在你写完小数点后的3之前结束,所以我们写了一些地方,认为它足够准确。

以同样的方式,1/10(十进制0.1)不能以2为基数(二进制)精确地表示为“十进制”值;小数点后的重复模式将永远持续下去。该值不精确,因此无法使用常规浮点方法对其进行精确计算。与基数10一样,还有其他值也显示了这个问题。

除了其他正确答案之外,您可能还需要考虑缩放值以避免浮点运算的问题。

例如:

var result = 1.0 + 2.0;     // result === 3.0 returns true

…而不是:

var result = 0.1 + 0.2;     // result === 0.3 returns false

在JavaScript中,表达式0.1+0.2===0.3返回false,但幸运的是,浮点中的整数运算是精确的,因此可以通过缩放来避免十进制表示错误。

作为一个实际的例子,为了避免精度至关重要的浮点问题,建议1将钱作为一个整数来处理:2550美分而不是25.50美元。


1 Douglas Crockford:JavaScript:好的部分:附录A——糟糕的部分(第105页)。

其实很简单。当你有一个基数为10的系统(像我们的系统)时,它只能表示使用基数素因子的分数。10的主要因子是2和5。因此,1/2、1/4、1/5、1/8和1/10都可以清晰地表达,因为分母都使用10的素因子。相比之下,1/3、1/6和1/7都是重复小数,因为它们的分母使用3或7的素因子。在二进制(或基数2)中,唯一的素因子是2。所以你只能清楚地表达分数,它只包含2作为素因子。在二进制中,1/2、1/4、1/8都可以清晰地表示为小数。而1/5或1/10将是重复小数。因此,0.1和0.2(1/10和1/5)虽然在以10为基数的系统中是干净的小数,但在计算机运行的以2为基数的体系中是重复的小数。当你对这些重复的小数进行数学运算时,当你将计算机的以2(二进制)为基数的数字转换为更易于人类阅读的以10为基础的数字时,你最终会留下剩余部分。

从…起https://0.30000000000000004.com/

我刚刚看到了关于浮点数的有趣问题:

考虑以下结果:

error = (2**53+1) - int(float(2**53+1))
>>> (2**53+1) - int(float(2**53+1))
1

当2**53+1时,我们可以清楚地看到一个断点——直到2**53,所有的工作都正常。

>>> (2**53) - int(float(2**53))
0

发生这种情况的原因是双精度二进制:IEEE 754双精度二进制浮点格式:binary64

从维基百科的双精度浮点格式页面:

双精度二进制浮点是PC上常用的格式,因为它的范围比单精度浮点更广,尽管它的性能和带宽成本很高。与单精度浮点格式一样,与相同大小的整数格式相比,它缺少整数的精度。它通常简称为double。IEEE 754标准规定二进制64具有:符号位:1位指数:11位有效精度:53位(显式存储52位)具有给定偏置指数和52位分数的给定64位双精度数据假设的实际值为或

感谢@aguest向我指出了这一点。