考虑以下代码:

0.1 + 0.2 == 0.3  ->  false
0.1 + 0.2         ->  0.30000000000000004

为什么会出现这些错误?


当前回答

为了好玩,我按照标准C99的定义玩了浮点数的表示,并编写了下面的代码。

代码以3个独立的组打印浮点的二进制表示

SIGN EXPONENT FRACTION

然后,它打印一个和,当以足够的精度求和时,它将显示硬件中真正存在的值。

因此,当你写float x=999…时,编译器会将该数字转换为函数xx打印的位表示,这样函数yy打印的和就等于给定的数字。

事实上,这个总数只是一个近似值。对于数字999999999,编译器将在浮点的位表示中插入数字1000000000

代码之后,我附加了一个控制台会话,在该会话中,我计算硬件中真正存在的两个常量(减去PI和999999999)的项和,并由编译器插入其中。

#include <stdio.h>
#include <limits.h>

void
xx(float *x)
{
    unsigned char i = sizeof(*x)*CHAR_BIT-1;
    do {
        switch (i) {
        case 31:
             printf("sign:");
             break;
        case 30:
             printf("exponent:");
             break;
        case 23:
             printf("fraction:");
             break;

        }
        char b=(*(unsigned long long*)x&((unsigned long long)1<<i))!=0;
        printf("%d ", b);
    } while (i--);
    printf("\n");
}

void
yy(float a)
{
    int sign=!(*(unsigned long long*)&a&((unsigned long long)1<<31));
    int fraction = ((1<<23)-1)&(*(int*)&a);
    int exponent = (255&((*(int*)&a)>>23))-127;

    printf(sign?"positive" " ( 1+":"negative" " ( 1+");
    unsigned int i = 1<<22;
    unsigned int j = 1;
    do {
        char b=(fraction&i)!=0;
        b&&(printf("1/(%d) %c", 1<<j, (fraction&(i-1))?'+':')' ), 0);
    } while (j++, i>>=1);

    printf("*2^%d", exponent);
    printf("\n");
}

void
main()
{
    float x=-3.14;
    float y=999999999;
    printf("%lu\n", sizeof(x));
    xx(&x);
    xx(&y);
    yy(x);
    yy(y);
}

这里是一个控制台会话,我在其中计算硬件中存在的浮点值的实际值。我使用bc打印主程序输出的项的总和。可以将该和插入python-repl或类似的内容中。

-- .../terra1/stub
@ qemacs f.c
-- .../terra1/stub
@ gcc f.c
-- .../terra1/stub
@ ./a.out
sign:1 exponent:1 0 0 0 0 0 0 fraction:0 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 1 0 0 0 0 1 1
sign:0 exponent:1 0 0 1 1 1 0 fraction:0 1 1 0 1 1 1 0 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 0
negative ( 1+1/(2) +1/(16) +1/(256) +1/(512) +1/(1024) +1/(2048) +1/(8192) +1/(32768) +1/(65536) +1/(131072) +1/(4194304) +1/(8388608) )*2^1
positive ( 1+1/(2) +1/(4) +1/(16) +1/(32) +1/(64) +1/(512) +1/(1024) +1/(4096) +1/(16384) +1/(32768) +1/(262144) +1/(1048576) )*2^29
-- .../terra1/stub
@ bc
scale=15
( 1+1/(2) +1/(4) +1/(16) +1/(32) +1/(64) +1/(512) +1/(1024) +1/(4096) +1/(16384) +1/(32768) +1/(262144) +1/(1048576) )*2^29
999999999.999999446351872

就是这样。999999999的值实际上是

999999999.999999446351872

您也可以通过bc检查-3.14也受到干扰。不要忘记在bc中设置比例因子。

显示的金额是硬件内部的金额。通过计算它获得的值取决于设置的比例。我确实将比例因子设置为15。数学上,以无限的精度,它似乎是1000000000。

其他回答

它被打破的方式与你在小学学习并每天使用的十进制(以10为基础)表示法完全相同,只是以2为基础。

要理解,请考虑将1/3表示为十进制值。这是不可能做到的!世界将在你写完小数点后的3之前结束,所以我们写了一些地方,认为它足够准确。

以同样的方式,1/10(十进制0.1)不能以2为基数(二进制)精确地表示为“十进制”值;小数点后的重复模式将永远持续下去。该值不精确,因此无法使用常规浮点方法对其进行精确计算。与基数10一样,还有其他值也显示了这个问题。

正常的算术是以10为基数的,所以小数表示十分、百分等。当你试图用二进制2为基数的算术表示浮点数时,你要处理的是半、四、八等。

在硬件中,浮点存储为整数尾数和指数。尾数表示有效数字。指数类似于科学记数法,但它使用的基数是2而不是10。例如,64.0将用尾数1和指数6表示。0.125将用尾数1和指数-3表示。

浮点小数必须加上2的负幂

0.1b = 0.5d
0.01b = 0.25d
0.001b = 0.125d
0.0001b = 0.0625d
0.00001b = 0.03125d

等等

在处理浮点运算时,通常使用误差增量而不是相等运算符。而不是

if(a==b) ...

你会使用

delta = 0.0001; // or some arbitrarily small amount
if(a - b > -delta && a - b < delta) ...

为了好玩,我按照标准C99的定义玩了浮点数的表示,并编写了下面的代码。

代码以3个独立的组打印浮点的二进制表示

SIGN EXPONENT FRACTION

然后,它打印一个和,当以足够的精度求和时,它将显示硬件中真正存在的值。

因此,当你写float x=999…时,编译器会将该数字转换为函数xx打印的位表示,这样函数yy打印的和就等于给定的数字。

事实上,这个总数只是一个近似值。对于数字999999999,编译器将在浮点的位表示中插入数字1000000000

代码之后,我附加了一个控制台会话,在该会话中,我计算硬件中真正存在的两个常量(减去PI和999999999)的项和,并由编译器插入其中。

#include <stdio.h>
#include <limits.h>

void
xx(float *x)
{
    unsigned char i = sizeof(*x)*CHAR_BIT-1;
    do {
        switch (i) {
        case 31:
             printf("sign:");
             break;
        case 30:
             printf("exponent:");
             break;
        case 23:
             printf("fraction:");
             break;

        }
        char b=(*(unsigned long long*)x&((unsigned long long)1<<i))!=0;
        printf("%d ", b);
    } while (i--);
    printf("\n");
}

void
yy(float a)
{
    int sign=!(*(unsigned long long*)&a&((unsigned long long)1<<31));
    int fraction = ((1<<23)-1)&(*(int*)&a);
    int exponent = (255&((*(int*)&a)>>23))-127;

    printf(sign?"positive" " ( 1+":"negative" " ( 1+");
    unsigned int i = 1<<22;
    unsigned int j = 1;
    do {
        char b=(fraction&i)!=0;
        b&&(printf("1/(%d) %c", 1<<j, (fraction&(i-1))?'+':')' ), 0);
    } while (j++, i>>=1);

    printf("*2^%d", exponent);
    printf("\n");
}

void
main()
{
    float x=-3.14;
    float y=999999999;
    printf("%lu\n", sizeof(x));
    xx(&x);
    xx(&y);
    yy(x);
    yy(y);
}

这里是一个控制台会话,我在其中计算硬件中存在的浮点值的实际值。我使用bc打印主程序输出的项的总和。可以将该和插入python-repl或类似的内容中。

-- .../terra1/stub
@ qemacs f.c
-- .../terra1/stub
@ gcc f.c
-- .../terra1/stub
@ ./a.out
sign:1 exponent:1 0 0 0 0 0 0 fraction:0 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 1 0 0 0 0 1 1
sign:0 exponent:1 0 0 1 1 1 0 fraction:0 1 1 0 1 1 1 0 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 0
negative ( 1+1/(2) +1/(16) +1/(256) +1/(512) +1/(1024) +1/(2048) +1/(8192) +1/(32768) +1/(65536) +1/(131072) +1/(4194304) +1/(8388608) )*2^1
positive ( 1+1/(2) +1/(4) +1/(16) +1/(32) +1/(64) +1/(512) +1/(1024) +1/(4096) +1/(16384) +1/(32768) +1/(262144) +1/(1048576) )*2^29
-- .../terra1/stub
@ bc
scale=15
( 1+1/(2) +1/(4) +1/(16) +1/(32) +1/(64) +1/(512) +1/(1024) +1/(4096) +1/(16384) +1/(32768) +1/(262144) +1/(1048576) )*2^29
999999999.999999446351872

就是这样。999999999的值实际上是

999999999.999999446351872

您也可以通过bc检查-3.14也受到干扰。不要忘记在bc中设置比例因子。

显示的金额是硬件内部的金额。通过计算它获得的值取决于设置的比例。我确实将比例因子设置为15。数学上,以无限的精度,它似乎是1000000000。

鉴于没有人提到这一点。。。

一些高级语言(如Python和Java)提供了克服二进制浮点限制的工具。例如:

Python的十进制模块和Java的BigDecimal类,它们在内部使用十进制表示法(与二进制表示法相反)表示数字。两者都有有限的精度,因此它们仍然容易出错,但它们解决了二进制浮点运算中最常见的问题。小数在处理金钱时很好:10美分加20美分总是正好是30美分:>>> 0.1 + 0.2 == 0.3错误>>>十进制('0.1')+十进制('0.2')==十进制('0.3')真的Python的十进制模块基于IEEE标准854-1987。Python的分数模块和Apache Common的BigFraction类。两者都将有理数表示为(分子、分母)对,它们可能给出比十进制浮点运算更精确的结果。

这两种解决方案都不是完美的(特别是如果我们考虑性能,或者如果我们需要非常高的精度),但它们仍然解决了二进制浮点运算的大量问题。

存储在计算机中的浮点数由两部分组成,一部分是整数,另一部分是基数乘以整数部分的指数。

如果计算机在基数为10的情况下工作,则0.1将是1 x 10⁻¹,0.2将是2 x 10⁻¹,0.3将是3 x 10⁻¹. 整数运算简单而准确,所以加上0.1+0.2显然会得到0.3。

计算机通常不以10为基数工作,而是以2为基数工作。对于某些值,仍然可以得到精确的结果,例如0.5是1 x 2⁻¹和0.25是1 x 2⁻²,将它们相加,结果为3 x 2⁻²或0.75。确切地

问题是数字可以精确地以10为基数表示,但不能以2为基数。这些数字需要四舍五入到最接近的相等值。假设非常常见的IEEE 64位浮点格式,最接近0.1的数字是3602879701896397 x 2⁻⁵⁵, 最接近0.2的数字是7205759403792794 x 2⁻⁵⁵; 将它们相加,得到10808639105689191 x 2⁻⁵⁵, 或精确的十进制值0.30000000000000000444089209850062616169452667236328125。浮点数通常四舍五入以显示。