考虑以下代码:

0.1 + 0.2 == 0.3  ->  false
0.1 + 0.2         ->  0.30000000000000004

为什么会出现这些错误?


当前回答

在硬件级别,浮点数表示为二进制数的分数(以2为基数)。例如,小数:

0.125

具有1/10+2/100+5/1000的值,并且以相同的方式,具有二进制分数:

0.001

值为0/2+0/4+1/8。这两个分数具有相同的值,唯一的区别是第一个是小数,第二个是二进制分数。

不幸的是,大多数十进制分数不能用二进制分数表示。因此,通常情况下,您给出的浮点数仅近似于存储在机器中的二进制分数。

这个问题在基础10中更容易解决。以分数1/3为例。您可以将其近似为小数:

0.3

或更好,

0.33

或更好,

0.333

无论你写了多少个小数点,结果永远不会精确到1/3,但这是一个总是更接近的估计。

同样,无论使用多少个以2为基数的小数位数,小数值0.1都不能精确地表示为二进制小数。在基数2中,1/10是以下周期数:

0.0001100110011001100110011001100110011001100110011 ...

停止在任何有限数量的比特,你会得到一个近似值。

对于Python,在典型的机器上,53位用于浮点的精度,因此输入小数0.1时存储的值是二进制小数。

0.00011001100110011001100110011001100110011001100110011010

其接近但不完全等于1/10。

很容易忘记存储的值是原始小数的近似值,因为在解释器中显示浮点的方式。Python只显示二进制存储值的十进制近似值。如果Python要输出存储为0.1的二进制近似值的真正十进制值,它将输出:

>>> 0.1
0.1000000000000000055511151231257827021181583404541015625

这比大多数人预期的小数位数要多得多,因此Python显示舍入值以提高可读性:

>>> 0.1
0.1

重要的是要理解,在现实中这是一种错觉:存储的值不完全是1/10,只是在显示器上存储的值被舍入。当您使用这些值执行算术运算时,这一点就会变得明显:

>>> 0.1 + 0.2
0.30000000000000004

这种行为是机器浮点表示的本质所固有的:它不是Python中的错误,也不是代码中的错误。你可以在所有其他语言中观察到相同类型的行为​​使用硬件支持计算浮点数(尽管有些语言​​默认情况下不使差异可见或在所有显示模式下不可见)。

另一个令人惊讶的地方就在这一点上。例如,如果尝试将值2.675舍入到两位小数,则会得到

>>> round (2.675, 2)
2.67

round()原语的文档表明它舍入到离零最近的值。由于小数正好在2.67和2.68之间的一半,因此应该可以得到2.68(二进制近似值)。然而,情况并非如此,因为当小数2.675转换为浮点时,它由精确值为:

2.67499999999999982236431605997495353221893310546875

由于近似值比2.68略接近2.67,因此舍入值降低。

如果您处于小数向下舍入的情况,那么应该使用十进制模块。顺便说一下,十进制模块还提供了一种方便的方式来“查看”为任何浮点存储的确切值。

>>> from decimal import Decimal
>>> Decimal (2.675)
>>> Decimal ('2.67499999999999982236431605997495353221893310546875')

0.1不是精确存储在1/10中这一事实的另一个结果是十个值的总和​​0.1也不等于1.0:

>>> sum = 0.0
>>> for i in range (10):
... sum + = 0.1
...>>> sum
0.9999999999999999

二进制浮点数的算术有很多这样的惊喜。“0.1”的问题将在下文“表示错误”一节中详细解释。有关此类惊喜的更完整列表,请参阅浮点运算的危险。

确实没有简单的答案,但是不要对浮动虚拟数字过分怀疑!在Python中,浮点数操作中的错误是由底层硬件造成的,在大多数机器上,每次操作的错误率不超过1/2*53。这对于大多数任务来说都是非常必要的,但您应该记住,这些操作不是十进制操作,并且对浮点数字的每一次操作都可能会出现新的错误。

尽管存在病态的情况,但对于大多数常见的用例,您只需在显示器上舍入到所需的小数位数,就可以在最后得到预期的结果。有关如何显示浮点数的详细控制,请参阅字符串格式语法以了解str.format()方法的格式规范。

答案的这一部分详细解释了“0.1”的示例,并展示了如何自己对此类案例进行精确分析。我们假设您熟悉浮点数的二进制表示。术语表示错误意味着大多数小数不能用二进制精确表示。这就是为什么Python(或Perl、C、C++、Java、Fortran等)通常不会以十进制显示精确结果的主要原因:

>>> 0.1 + 0.2
0.30000000000000004

为什么?1/10和2/10不能用二进制分数精确表示。然而,今天(2010年7月)所有的机器都遵循IEEE-754标准来计算浮点数。大多数平台使用“IEEE-754双精度”来表示Python浮点。双精度IEEE-754使用53位精度,因此在读取时,计算机尝试将0.1转换为J/2*N形式的最接近分数,J正好是53位的整数。重写:

1/10 ~ = J / (2 ** N)

in :

J ~ = 2 ** N / 10

记住J正好是53位(所以>=2**52但<2**53),N的最佳可能值是56:

>>> 2 ** 52
4503599627370496
>>> 2 ** 53
9007199254740992
>>> 2 ** 56/10
7205759403792793

因此,56是N的唯一可能值,正好为J保留53位。因此,J的最佳可能值是这个商,四舍五入:

>>> q, r = divmod (2 ** 56, 10)
>>> r
6

由于进位大于10的一半,通过四舍五入获得最佳近似值:

>>> q + 1
7205759403792794

因此,“IEEE-754双精度”中1/10的最佳近似值为2**56以上,即:

7205759403792794/72057594037927936

注意,由于四舍五入是向上进行的,结果实际上略大于1/10;如果我们没有四舍五入,这个商会略小于1/10。但无论如何都不是1/10!

因此,计算机从未“看到”1/10:它看到的是上面给出的精确分数,这是使用“IEEE-754”中的双精度浮点数的最佳近似值:

>>>. 1 * 2 ** 56
7205759403792794.0

如果我们将这个分数乘以10**30,我们可以观察到这些值​​它的30位小数具有很强的权重。

>>> 7205759403792794 * 10 ** 30 // 2 ** 56
100000000000000005551115123125L

这意味着存储在计算机中的精确值近似等于十进制值0.100000000000000005551115123125。在Python 2.7和Python 3.1之前的版本中,Python舍入这些值​​到17位有效小数,显示“0.10000000000000001”。在当前版本的Python中,显示的值是分数尽可能短的值,当转换回二进制时,给出的表示形式完全相同,只需显示“0.1”。

其他回答

另一种方法是:使用64位来表示数字。因此,无法精确表示超过2**64=18446744073709551616个不同的数字。

然而,Math表示,在0和1之间已经有无限多的小数。IEE 754定义了一种编码,以有效地将这64位用于更大的数字空间加上NaN和+/-无穷大,因此在精确表示的数字之间存在间隙,只填充近似的数字。

不幸的是,0.3存在差距。

从Python 3.5开始,您可以使用math.isclose()函数来测试近似相等性:

>>> import math
>>> math.isclose(0.1 + 0.2, 0.3)
True
>>> 0.1 + 0.2 == 0.3
False

这里的大多数答案都用非常枯燥的技术术语来解决这个问题。我想用正常人能够理解的方式来解决这个问题。

想象一下,你正试图把披萨切成薄片。你有一个机器人披萨切割机,可以将披萨切成两半。它可以将整个披萨减半,也可以将现有的披萨减半,但无论如何,减半总是准确的。

那台披萨切割机动作非常精细,如果你从一整块披萨开始,然后将其减半,然后继续每次将最小的披萨片减半,你可以在披萨片太小甚至无法实现高精度功能之前,将其减半53次。此时,您不能再将非常薄的切片减半,但必须按原样包含或排除它。

现在,你如何将所有的切片以这样一种方式分割,使其达到披萨的十分之一(0.1)或五分之一(0.2)?真的想一想,试着解决它。如果你手边有一个神话般的精密披萨切割机,你甚至可以尝试使用真正的披萨


当然,大多数有经验的程序员都知道真正的答案,那就是,无论你切得多细,都无法用这些切片拼凑出十分之一或五分之一的披萨。你可以做一个非常好的近似值,如果你把0.1的近似值和0.2的近似值相加,你会得到非常好的0.3的近似值。

对于双精度数字(允许您将披萨减半53次的精度),小于或大于0.1的数字分别为0.09999999999999999167332731531132594682276248931884765625和0.1000000000000000055511151231257827021181583404541015625。后者比前者更接近0.1,因此,如果输入值为0.1,数字解析器将倾向于后者。

(这两个数字之间的区别是“最小切片”,我们必须决定是否包含,这会引入向上的偏差,或者排除,这会带来向下的偏差。最小切片的技术术语是ulp。)

在0.2的情况下,数字都是相同的,只是放大了2倍。同样,我们赞成略高于0.2的值。

注意,在这两种情况下,0.1和0.2的近似值都有轻微的向上偏差。如果我们加上足够多的这些偏差,它们会将数字推离我们想要的越来越远,事实上,在0.1+0.2的情况下,偏差足够高,从而导致的数字不再是最接近0.3的数字。

特别是,0.1+0.2实际上是0.1000000000000000055511151231257827021181583404541015625+0.0200000000000000011102230246251565404236316680908203125=0.30000000000000000444089209850062616169452667236328125,而最接近0.3的数字实际上是0.29999999999988897769753748434595763683319091796875。


另外,一些编程语言还提供了披萨切割机,可以将披萨切成十分之一。虽然这种披萨切刀并不常见,但如果你有机会切到一个,那么你应该在切到十分之一或五分之一的披萨片非常重要的时候使用它。

(最初发布在Quora上。)

存储在计算机中的浮点数由两部分组成,一部分是整数,另一部分是基数乘以整数部分的指数。

如果计算机在基数为10的情况下工作,则0.1将是1 x 10⁻¹,0.2将是2 x 10⁻¹,0.3将是3 x 10⁻¹. 整数运算简单而准确,所以加上0.1+0.2显然会得到0.3。

计算机通常不以10为基数工作,而是以2为基数工作。对于某些值,仍然可以得到精确的结果,例如0.5是1 x 2⁻¹和0.25是1 x 2⁻²,将它们相加,结果为3 x 2⁻²或0.75。确切地

问题是数字可以精确地以10为基数表示,但不能以2为基数。这些数字需要四舍五入到最接近的相等值。假设非常常见的IEEE 64位浮点格式,最接近0.1的数字是3602879701896397 x 2⁻⁵⁵, 最接近0.2的数字是7205759403792794 x 2⁻⁵⁵; 将它们相加,得到10808639105689191 x 2⁻⁵⁵, 或精确的十进制值0.30000000000000000444089209850062616169452667236328125。浮点数通常四舍五入以显示。

不,不破,但大多数小数必须近似

总结

浮点运算是精确的,不幸的是,它与我们通常的以10为基数的数字表示法不太匹配,所以我们经常给它的输入与我们写的略有不同。

即使是像0.01、0.02、0.03、0.04…0.24这样的简单数字也不能精确地表示为二进制分数。如果你数到0.01、.02、.03…,直到你数到0.25,你才能得到以2为底的第一个分数。如果你尝试使用FP,那么你的0.01会稍微有点偏差,所以要将其中的25个相加到一个精确的0.25,就需要一长串的因果关系,包括保护位和舍入。很难预测,所以我们举手说“FP不准确”,但事实并非如此。

我们不断地给FP硬件一些在基数10中看似简单但在基数2中却是重复的分数。

这是怎么发生的?

当我们用十进制书写时,每个分数(特别是每个终止的小数)都是形式的有理数

          a/(2n x 5m)

在二进制中,我们只得到2n项,即:

a/2n

所以在十进制中,我们不能表示1/3。因为基数10包括2作为素因子,所以我们可以写成二进制分数的每个数字也可以写成基数10的分数。然而,我们写为10进制分数的任何东西都很难用二进制表示。在0.01、0.02、0.03…0.99的范围内,只有三个数字可以用我们的FP格式表示:0.25、0.50和0.75,因为它们是1/4、1/2和3/4,所有的数字都只使用2n项。

在base10中,我们不能表示1/3。但在二进制中,我们不能做1/10或1/3。

因此,虽然每一个二进制分数都可以用十进制来表示,但反过来却不正确。事实上,大多数小数在二进制中重复。

处理它

开发人员通常被要求进行<epsilon比较,更好的建议可能是舍入为整数值(在C库中:round()和round f(),即保持FP格式),然后进行比较。舍入到特定的小数部分长度可以解决大多数输出问题。

此外,在实数运算问题(FP是在早期昂贵的计算机上为之发明的问题)上,宇宙的物理常数和所有其他测量值只为相对较少的有效数字所知,因此整个问题空间无论如何都是“不精确的”。FP“精度”在这种应用中不是问题。

当人们尝试使用FP进行计数时,整个问题就真的出现了。它确实可以做到这一点,但前提是你坚持使用整数值,这会破坏使用它的意义。这就是为什么我们拥有所有这些小数软件库的原因。

我喜欢克里斯的披萨回答,因为它描述了实际问题,而不仅仅是关于“不准确”的通常手写。如果FP只是“不准确”,我们可以修复它,而且几十年前就已经做到了。我们没有这样做的原因是因为FP格式紧凑快速,是处理大量数字的最佳方式。此外,这也是太空时代和军备竞赛以及早期使用小型内存系统解决速度非常慢的计算机的大问题的尝试所留下的遗产。(有时,单个磁芯用于1位存储,但这是另一回事。)

结论

如果您只是在银行数豆子,那么首先使用十进制字符串表示的软件解决方案工作得非常好。但你不能这样做量子色动力学或空气动力学。