考虑以下代码:

0.1 + 0.2 == 0.3  ->  false
0.1 + 0.2         ->  0.30000000000000004

为什么会出现这些错误?


当前回答

十进制数(如0.1、0.2和0.3)在二进制编码浮点类型中没有精确表示。0.1和0.2的近似值之和与0.3的近似值不同,因此,0.1+0.2==0.3的错误在这里可以更清楚地看到:

#include <stdio.h>

int main() {
    printf("0.1 + 0.2 == 0.3 is %s\n", 0.1 + 0.2 == 0.3 ? "true" : "false");
    printf("0.1 is %.23f\n", 0.1);
    printf("0.2 is %.23f\n", 0.2);
    printf("0.1 + 0.2 is %.23f\n", 0.1 + 0.2);
    printf("0.3 is %.23f\n", 0.3);
    printf("0.3 - (0.1 + 0.2) is %g\n", 0.3 - (0.1 + 0.2));
    return 0;
}

输出:

0.1 + 0.2 == 0.3 is false
0.1 is 0.10000000000000000555112
0.2 is 0.20000000000000001110223
0.1 + 0.2 is 0.30000000000000004440892
0.3 is 0.29999999999999998889777
0.3 - (0.1 + 0.2) is -5.55112e-17

为了更可靠地计算这些计算,您需要对浮点值使用基于十进制的表示。C标准没有默认指定此类类型,而是作为技术报告中描述的扩展。

_Decimal32、_Decimal64和_Decimal128类型可能在您的系统上可用(例如,GCC在选定的目标上支持它们,但Clang在OS X上不支持它们)。

其他回答

浮点舍入错误。从每个计算机科学家应该知道的浮点运算:

将无限多的实数压缩成有限位数需要近似表示。虽然有无限多的整数,但在大多数程序中,整数计算的结果可以存储在32位中。相反,给定任何固定位数,大多数使用实数的计算将产生无法使用那么多位数精确表示的量。因此,浮点计算的结果必须经常舍入,以适应其有限表示。这种舍入误差是浮点计算的特征。

其实很简单。当你有一个基数为10的系统(像我们的系统)时,它只能表示使用基数素因子的分数。10的主要因子是2和5。因此,1/2、1/4、1/5、1/8和1/10都可以清晰地表达,因为分母都使用10的素因子。相比之下,1/3、1/6和1/7都是重复小数,因为它们的分母使用3或7的素因子。在二进制(或基数2)中,唯一的素因子是2。所以你只能清楚地表达分数,它只包含2作为素因子。在二进制中,1/2、1/4、1/8都可以清晰地表示为小数。而1/5或1/10将是重复小数。因此,0.1和0.2(1/10和1/5)虽然在以10为基数的系统中是干净的小数,但在计算机运行的以2为基数的体系中是重复的小数。当你对这些重复的小数进行数学运算时,当你将计算机的以2(二进制)为基数的数字转换为更易于人类阅读的以10为基础的数字时,你最终会留下剩余部分。

从…起https://0.30000000000000004.com/

另一种方法是:使用64位来表示数字。因此,无法精确表示超过2**64=18446744073709551616个不同的数字。

然而,Math表示,在0和1之间已经有无限多的小数。IEE 754定义了一种编码,以有效地将这64位用于更大的数字空间加上NaN和+/-无穷大,因此在精确表示的数字之间存在间隙,只填充近似的数字。

不幸的是,0.3存在差距。

从Python 3.5开始,您可以使用math.isclose()函数来测试近似相等性:

>>> import math
>>> math.isclose(0.1 + 0.2, 0.3)
True
>>> 0.1 + 0.2 == 0.3
False

浮点舍入错误。由于缺少5的素因子,0.1在基-2中不能像在基-10中那样精确地表示。正如1/3以十进制表示需要无限位数,但以3为基数表示为“0.1”,0.1以2为基数表示,而以10为基数不表示。计算机没有无限的内存。