考虑以下代码:
0.1 + 0.2 == 0.3 -> false
0.1 + 0.2 -> 0.30000000000000004
为什么会出现这些错误?
考虑以下代码:
0.1 + 0.2 == 0.3 -> false
0.1 + 0.2 -> 0.30000000000000004
为什么会出现这些错误?
当前回答
十进制数(如0.1、0.2和0.3)在二进制编码浮点类型中没有精确表示。0.1和0.2的近似值之和与0.3的近似值不同,因此,0.1+0.2==0.3的错误在这里可以更清楚地看到:
#include <stdio.h>
int main() {
printf("0.1 + 0.2 == 0.3 is %s\n", 0.1 + 0.2 == 0.3 ? "true" : "false");
printf("0.1 is %.23f\n", 0.1);
printf("0.2 is %.23f\n", 0.2);
printf("0.1 + 0.2 is %.23f\n", 0.1 + 0.2);
printf("0.3 is %.23f\n", 0.3);
printf("0.3 - (0.1 + 0.2) is %g\n", 0.3 - (0.1 + 0.2));
return 0;
}
输出:
0.1 + 0.2 == 0.3 is false
0.1 is 0.10000000000000000555112
0.2 is 0.20000000000000001110223
0.1 + 0.2 is 0.30000000000000004440892
0.3 is 0.29999999999999998889777
0.3 - (0.1 + 0.2) is -5.55112e-17
为了更可靠地计算这些计算,您需要对浮点值使用基于十进制的表示。C标准没有默认指定此类类型,而是作为技术报告中描述的扩展。
_Decimal32、_Decimal64和_Decimal128类型可能在您的系统上可用(例如,GCC在选定的目标上支持它们,但Clang在OS X上不支持它们)。
其他回答
你试过胶带解决方案了吗?
尝试确定错误发生的时间,并用简短的if语句修复它们,这并不漂亮,但对于某些问题,这是唯一的解决方案,这就是其中之一。
if( (n * 0.1) < 100.0 ) { return n * 0.1 - 0.000000000000001 ;}
else { return n * 0.1 + 0.000000000000001 ;}
我在c#的一个科学模拟项目中也遇到过同样的问题,我可以告诉你,如果你忽视蝴蝶效应,它会变成一条大胖龙,咬你一口**
可以在数字计算机中实现的浮点数学必须使用实数的近似值及其运算。(标准版文件长达50多页,并有一个委员会处理其勘误表和进一步完善。)
这种近似是不同类型的近似的混合,每一种都可以被忽略或仔细考虑,因为其偏离精确性的特定方式。它还涉及到许多硬件和软件层面的明确例外情况,大多数人都会走过来假装没有注意到。
如果您需要无限精度(例如,使用数字π,而不是其许多较短的替代项之一),您应该编写或使用符号数学程序。
但是,如果您同意浮点数学有时在值和逻辑上是模糊的,错误可能会很快累积,并且您可以编写需求和测试来考虑这一点,那么您的代码可以经常通过FPU中的内容。
一些统计数据与这个著名的双精度问题有关。
当使用0.1(从0.1到100)的步长将所有值(a+b)相加时,精度误差的概率约为15%。请注意,该错误可能会导致稍大或稍小的值。以下是一些示例:
0.1 + 0.2 = 0.30000000000000004 (BIGGER)
0.1 + 0.7 = 0.7999999999999999 (SMALLER)
...
1.7 + 1.9 = 3.5999999999999996 (SMALLER)
1.7 + 2.2 = 3.9000000000000004 (BIGGER)
...
3.2 + 3.6 = 6.800000000000001 (BIGGER)
3.2 + 4.4 = 7.6000000000000005 (BIGGER)
当使用0.1(从100到0.1)的步长减去所有值(a-b,其中a>b)时,我们有大约34%的精度误差。以下是一些示例:
0.6 - 0.2 = 0.39999999999999997 (SMALLER)
0.5 - 0.4 = 0.09999999999999998 (SMALLER)
...
2.1 - 0.2 = 1.9000000000000001 (BIGGER)
2.0 - 1.9 = 0.10000000000000009 (BIGGER)
...
100 - 99.9 = 0.09999999999999432 (SMALLER)
100 - 99.8 = 0.20000000000000284 (BIGGER)
*15%和34%确实是巨大的,所以当精度非常重要时,请始终使用BigDecimal。使用2个十进制数字(步骤0.01),情况会进一步恶化(18%和36%)。
另一种方法是:使用64位来表示数字。因此,无法精确表示超过2**64=18446744073709551616个不同的数字。
然而,Math表示,在0和1之间已经有无限多的小数。IEE 754定义了一种编码,以有效地将这64位用于更大的数字空间加上NaN和+/-无穷大,因此在精确表示的数字之间存在间隙,只填充近似的数字。
不幸的是,0.3存在差距。
除了其他正确答案之外,您可能还需要考虑缩放值以避免浮点运算的问题。
例如:
var result = 1.0 + 2.0; // result === 3.0 returns true
…而不是:
var result = 0.1 + 0.2; // result === 0.3 returns false
在JavaScript中,表达式0.1+0.2===0.3返回false,但幸运的是,浮点中的整数运算是精确的,因此可以通过缩放来避免十进制表示错误。
作为一个实际的例子,为了避免精度至关重要的浮点问题,建议1将钱作为一个整数来处理:2550美分而不是25.50美元。
1 Douglas Crockford:JavaScript:好的部分:附录A——糟糕的部分(第105页)。