考虑以下代码:
0.1 + 0.2 == 0.3 -> false
0.1 + 0.2 -> 0.30000000000000004
为什么会出现这些错误?
考虑以下代码:
0.1 + 0.2 == 0.3 -> false
0.1 + 0.2 -> 0.30000000000000004
为什么会出现这些错误?
当前回答
另一种方法是:使用64位来表示数字。因此,无法精确表示超过2**64=18446744073709551616个不同的数字。
然而,Math表示,在0和1之间已经有无限多的小数。IEE 754定义了一种编码,以有效地将这64位用于更大的数字空间加上NaN和+/-无穷大,因此在精确表示的数字之间存在间隙,只填充近似的数字。
不幸的是,0.3存在差距。
其他回答
这个问题的许多重复问题都是关于浮点舍入对特定数字的影响。在实践中,通过查看感兴趣的计算的确切结果而不是仅仅阅读它,更容易了解它的工作原理。一些语言提供了实现这一点的方法,例如在Java中将浮点或双精度转换为BigDecimal。
由于这是一个语言不可知的问题,因此需要语言不可知工具,例如十进制到浮点转换器。
将其应用于问题中的数字,视为双精度:
0.1转换为0.1000000000000000055511151231257827021181583404541015625,
0.2转换为0.200000000000000011102230246251565404236316680908203125,
0.3转换为0.299999999999999988897769753748434595763683319091796875,以及
0.300000000000000004转换为0.30000000000000000444089209850062616169452667236328125。
手动或在十进制计算器(如Full Precision calculator)中添加前两个数字,显示实际输入的精确和为0.30000000000000000166533453693773481063544750213623046875。
如果四舍五入到等于0.3,则舍入误差将为0.000000000000000027755575615628913510591702705078125。四舍五入等于0.300000000000000004也会产生舍入误差0.000000000000000027755575615628913510591702705078125。打成平手的规则适用。
返回浮点转换器,0.300000000000000004的原始十六进制是3fd333333333334,以偶数结尾,因此是正确的结果。
我的解决方法:
function add(a, b, precision) {
var x = Math.pow(10, precision || 2);
return (Math.round(a * x) + Math.round(b * x)) / x;
}
精度是指在加法过程中要保留小数点后的位数。
想象一下,以10为基数,例如8位数的精度工作。您检查是否
1/3 + 2 / 3 == 1
并了解到这返回错误。为什么?好吧,作为真实的数字
1/3=0.333….和2/3=0.666。。。。
在小数点后八位截断,我们得到
0.33333333 + 0.66666666 = 0.99999999
当然,这与1.00000000正好相差0.00000001。
具有固定位数的二进制数的情况完全类似。作为实数,我们有
1/10=0.0001100110011001100…(底座2)
and
1/5=0.00111001100110011001…(底座2)
如果我们把这些截成七位
0.0001100 + 0.0011001 = 0.0100101
而另一方面,
3/10=0.010011001100110011…(基数2)
被截断为七位的值为0.0100110,两者相差0.0000001。
确切的情况稍显微妙,因为这些数字通常以科学符号存储。因此,例如,我们可以将其存储为1.10011*2^-4,而不是将1/10存储为0.0001100,这取决于我们为指数和尾数分配了多少位。这会影响计算的精度位数。
结果是,由于这些舍入错误,您根本不想在浮点数上使用==。相反,您可以检查它们的差值的绝对值是否小于某个固定的小数字。
简而言之,这是因为:
浮点数不能以二进制精确表示所有小数
因此,就像10/3不精确地存在于基数10中(它将是3.33……重复出现)一样,1/10也不存在于二进制中。
那又怎么样?如何处理?有什么解决办法吗?
为了提供最佳解决方案,我可以说我发现了以下方法:
parseFloat((0.1 + 0.2).toFixed(10)) => Will return 0.3
让我解释一下为什么这是最好的解决方案。正如上面提到的其他答案一样,使用现成的Javascript toFixed()函数来解决问题是一个好主意。但很可能你会遇到一些问题。
假设你将两个浮点数相加,如0.2和0.7,这里是:0.2+0.7=0.8999999999999999。
您的预期结果是0.9,这意味着您需要一个精度为1位数的结果。因此,您应该使用(0.2+0.7).tfixed(1)但是不能只给toFixed()一个特定的参数,因为它取决于给定的数字,例如
0.22 + 0.7 = 0.9199999999999999
在本例中,您需要2位精度,因此它应该为Fixed(2),那么,适合每个给定浮点数的参数应该是什么?
你可以说在每种情况下都是10:
(0.2 + 0.7).toFixed(10) => Result will be "0.9000000000"
该死你打算怎么处理那些9后不需要的零?现在是将其转换为浮动的时候了,以实现您的愿望:
parseFloat((0.2 + 0.7).toFixed(10)) => Result will be 0.9
既然找到了解决方案,那么最好将其作为如下函数提供:
function floatify(number){
return parseFloat((number).toFixed(10));
}
让我们自己试试吧:函数floatify(数字){return parseFloat((number).toFixed(10));}函数addUp(){var number1=+$(“#number1”).val();var number2=+$(“#number2”).val();var expectedResult=number1+number2;var expectedResult=浮动(number1+number2);$(“#意外结果”).text(意外结果);$(“#expectedResult”).text(expectedResult);}addUp();输入{宽度:50px;}#预期结果{颜色:绿色;}#未预期结果{颜色:红色;}<script src=“https://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js“></script><input id=“number1”value=“0.2”onclick=“addUp()”onkeyup=“addUp()”/>+<input id=“number2”value=“0.7”onclick=“addUp()”onkeyup=“addUp()”/>=<p>预期结果:<span id=“expectedResult”></span></p><p>意外结果:<span id=“expectedResult”></span></p>
您可以这样使用:
var x = 0.2 + 0.7;
floatify(x); => Result: 0.9
正如W3SCHOOLS所建议的,还有另一种解决方案,您可以通过乘法和除法来解决上述问题:
var x = (0.2 * 10 + 0.1 * 10) / 10; // x will be 0.3
请记住,(0.2+0.1)*10/10根本不起作用,尽管看起来是一样的!我更喜欢第一种解决方案,因为我可以将其作为一个函数应用,将输入浮点转换为精确的输出浮点。
仅供参考,乘法也存在同样的问题,例如0.09*10返回0.8999999999999999。应用flotify函数作为解决方法:flotify(0.09*10)返回0.9
另一种方法是:使用64位来表示数字。因此,无法精确表示超过2**64=18446744073709551616个不同的数字。
然而,Math表示,在0和1之间已经有无限多的小数。IEE 754定义了一种编码,以有效地将这64位用于更大的数字空间加上NaN和+/-无穷大,因此在精确表示的数字之间存在间隙,只填充近似的数字。
不幸的是,0.3存在差距。