考虑以下代码:
0.1 + 0.2 == 0.3 -> false
0.1 + 0.2 -> 0.30000000000000004
为什么会出现这些错误?
考虑以下代码:
0.1 + 0.2 == 0.3 -> false
0.1 + 0.2 -> 0.30000000000000004
为什么会出现这些错误?
当前回答
存储在计算机中的浮点数由两部分组成,一部分是整数,另一部分是基数乘以整数部分的指数。
如果计算机在基数为10的情况下工作,则0.1将是1 x 10⁻¹,0.2将是2 x 10⁻¹,0.3将是3 x 10⁻¹. 整数运算简单而准确,所以加上0.1+0.2显然会得到0.3。
计算机通常不以10为基数工作,而是以2为基数工作。对于某些值,仍然可以得到精确的结果,例如0.5是1 x 2⁻¹和0.25是1 x 2⁻²,将它们相加,结果为3 x 2⁻²或0.75。确切地
问题是数字可以精确地以10为基数表示,但不能以2为基数。这些数字需要四舍五入到最接近的相等值。假设非常常见的IEEE 64位浮点格式,最接近0.1的数字是3602879701896397 x 2⁻⁵⁵, 最接近0.2的数字是7205759403792794 x 2⁻⁵⁵; 将它们相加,得到10808639105689191 x 2⁻⁵⁵, 或精确的十进制值0.30000000000000000444089209850062616169452667236328125。浮点数通常四舍五入以显示。
其他回答
二进制浮点数学是这样的。在大多数编程语言中,它基于IEEE 754标准。问题的关键在于,数字以这种格式表示为整数乘以2的幂;分母不是2的幂的有理数(如0.1,即1/10)无法精确表示。
对于标准binary64格式的0.1,表示形式可以完全写为
0.1000000000000000055511151231257827021181583404541015625(十进制),或0x1.999999999999ap-4,采用C99六进制浮点数表示法。
相比之下,有理数0.1(1/10)可以完全写成
0.1(十进制),或0x1.999999999999999…p-4,类似于C99十六进制浮点数,其中。。。表示9的无限序列。
程序中的常数0.2和0.3也将近似于其真实值。恰好最接近0.2的两倍大于有理数0.2,但最接近0.3的两倍小于有理数0.3。0.1和0.2的和最终大于有理数0.3,因此与代码中的常数不一致。
浮点运算问题的一个相当全面的处理是每个计算机科学家都应该知道的浮点运算。有关更容易理解的解释,请参阅floatingpoint-gui.de。
边注:所有位置(以N为基数)数字系统都有精度问题
普通的十进制(以10为基数)数字也有同样的问题,这就是为什么像1/3这样的数字最终会变成0.33333333。。。
您刚刚偶然发现了一个数字(3/10),它很容易用十进制表示,但不适合二进制。它也是双向的(在某种程度上):1/16在十进制中是一个丑陋的数字(0.0625),但在二进制中,它看起来和十进制中的第10000个一样整洁(0.0001)**-如果我们在日常生活中习惯使用基数为2的数字系统,你甚至会看着这个数字,本能地理解你可以通过将某个数字减半,一次又一次地减半来达到这个目的。
当然,这并不是浮点数在内存中的存储方式(它们使用了一种科学的表示法)。然而,它确实说明了一点,二进制浮点精度错误往往会出现,因为我们通常感兴趣的“真实世界”数字往往是十的幂,但这只是因为我们每天使用十进制数字系统。这也是为什么我们会说71%而不是“每7取5”(71%是一个近似值,因为5/7不能用任何小数精确表示)。
所以不:二进制浮点数并没有被破坏,它们只是碰巧和其他N进制一样不完美:)
边注:在编程中使用浮点
实际上,这种精度问题意味着在显示浮点数之前,需要使用舍入函数将浮点数舍入到您感兴趣的小数位数。
您还需要用允许一定公差的比较来替换相等测试,这意味着:
如果(x==y){…}则不执行
相反,如果(abs(x-y)<myToleranceValue){…},则执行此操作。
其中abs是绝对值。需要为您的特定应用程序选择myToleranceValue,这与您准备允许多少“摆动空间”以及您将要比较的最大值(由于精度损失问题)有很大关系。当心您选择的语言中的“epsilon”样式常量。这些值可以用作公差值,但它们的有效性取决于您使用的数字的大小,因为使用大数字的计算可能会超过epsilon阈值。
它被打破的方式与你在小学学习并每天使用的十进制(以10为基础)表示法完全相同,只是以2为基础。
要理解,请考虑将1/3表示为十进制值。这是不可能做到的!世界将在你写完小数点后的3之前结束,所以我们写了一些地方,认为它足够准确。
以同样的方式,1/10(十进制0.1)不能以2为基数(二进制)精确地表示为“十进制”值;小数点后的重复模式将永远持续下去。该值不精确,因此无法使用常规浮点方法对其进行精确计算。与基数10一样,还有其他值也显示了这个问题。
简而言之,这是因为:
浮点数不能以二进制精确表示所有小数
因此,就像10/3不精确地存在于基数10中(它将是3.33……重复出现)一样,1/10也不存在于二进制中。
那又怎么样?如何处理?有什么解决办法吗?
为了提供最佳解决方案,我可以说我发现了以下方法:
parseFloat((0.1 + 0.2).toFixed(10)) => Will return 0.3
让我解释一下为什么这是最好的解决方案。正如上面提到的其他答案一样,使用现成的Javascript toFixed()函数来解决问题是一个好主意。但很可能你会遇到一些问题。
假设你将两个浮点数相加,如0.2和0.7,这里是:0.2+0.7=0.8999999999999999。
您的预期结果是0.9,这意味着您需要一个精度为1位数的结果。因此,您应该使用(0.2+0.7).tfixed(1)但是不能只给toFixed()一个特定的参数,因为它取决于给定的数字,例如
0.22 + 0.7 = 0.9199999999999999
在本例中,您需要2位精度,因此它应该为Fixed(2),那么,适合每个给定浮点数的参数应该是什么?
你可以说在每种情况下都是10:
(0.2 + 0.7).toFixed(10) => Result will be "0.9000000000"
该死你打算怎么处理那些9后不需要的零?现在是将其转换为浮动的时候了,以实现您的愿望:
parseFloat((0.2 + 0.7).toFixed(10)) => Result will be 0.9
既然找到了解决方案,那么最好将其作为如下函数提供:
function floatify(number){
return parseFloat((number).toFixed(10));
}
让我们自己试试吧:函数floatify(数字){return parseFloat((number).toFixed(10));}函数addUp(){var number1=+$(“#number1”).val();var number2=+$(“#number2”).val();var expectedResult=number1+number2;var expectedResult=浮动(number1+number2);$(“#意外结果”).text(意外结果);$(“#expectedResult”).text(expectedResult);}addUp();输入{宽度:50px;}#预期结果{颜色:绿色;}#未预期结果{颜色:红色;}<script src=“https://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js“></script><input id=“number1”value=“0.2”onclick=“addUp()”onkeyup=“addUp()”/>+<input id=“number2”value=“0.7”onclick=“addUp()”onkeyup=“addUp()”/>=<p>预期结果:<span id=“expectedResult”></span></p><p>意外结果:<span id=“expectedResult”></span></p>
您可以这样使用:
var x = 0.2 + 0.7;
floatify(x); => Result: 0.9
正如W3SCHOOLS所建议的,还有另一种解决方案,您可以通过乘法和除法来解决上述问题:
var x = (0.2 * 10 + 0.1 * 10) / 10; // x will be 0.3
请记住,(0.2+0.1)*10/10根本不起作用,尽管看起来是一样的!我更喜欢第一种解决方案,因为我可以将其作为一个函数应用,将输入浮点转换为精确的输出浮点。
仅供参考,乘法也存在同样的问题,例如0.09*10返回0.8999999999999999。应用flotify函数作为解决方法:flotify(0.09*10)返回0.9
我的解决方法:
function add(a, b, precision) {
var x = Math.pow(10, precision || 2);
return (Math.round(a * x) + Math.round(b * x)) / x;
}
精度是指在加法过程中要保留小数点后的位数。
一些统计数据与这个著名的双精度问题有关。
当使用0.1(从0.1到100)的步长将所有值(a+b)相加时,精度误差的概率约为15%。请注意,该错误可能会导致稍大或稍小的值。以下是一些示例:
0.1 + 0.2 = 0.30000000000000004 (BIGGER)
0.1 + 0.7 = 0.7999999999999999 (SMALLER)
...
1.7 + 1.9 = 3.5999999999999996 (SMALLER)
1.7 + 2.2 = 3.9000000000000004 (BIGGER)
...
3.2 + 3.6 = 6.800000000000001 (BIGGER)
3.2 + 4.4 = 7.6000000000000005 (BIGGER)
当使用0.1(从100到0.1)的步长减去所有值(a-b,其中a>b)时,我们有大约34%的精度误差。以下是一些示例:
0.6 - 0.2 = 0.39999999999999997 (SMALLER)
0.5 - 0.4 = 0.09999999999999998 (SMALLER)
...
2.1 - 0.2 = 1.9000000000000001 (BIGGER)
2.0 - 1.9 = 0.10000000000000009 (BIGGER)
...
100 - 99.9 = 0.09999999999999432 (SMALLER)
100 - 99.8 = 0.20000000000000284 (BIGGER)
*15%和34%确实是巨大的,所以当精度非常重要时,请始终使用BigDecimal。使用2个十进制数字(步骤0.01),情况会进一步恶化(18%和36%)。