考虑以下代码:

0.1 + 0.2 == 0.3  ->  false
0.1 + 0.2         ->  0.30000000000000004

为什么会出现这些错误?


当前回答

其实很简单。当你有一个基数为10的系统(像我们的系统)时,它只能表示使用基数素因子的分数。10的主要因子是2和5。因此,1/2、1/4、1/5、1/8和1/10都可以清晰地表达,因为分母都使用10的素因子。相比之下,1/3、1/6和1/7都是重复小数,因为它们的分母使用3或7的素因子。在二进制(或基数2)中,唯一的素因子是2。所以你只能清楚地表达分数,它只包含2作为素因子。在二进制中,1/2、1/4、1/8都可以清晰地表示为小数。而1/5或1/10将是重复小数。因此,0.1和0.2(1/10和1/5)虽然在以10为基数的系统中是干净的小数,但在计算机运行的以2为基数的体系中是重复的小数。当你对这些重复的小数进行数学运算时,当你将计算机的以2(二进制)为基数的数字转换为更易于人类阅读的以10为基础的数字时,你最终会留下剩余部分。

从…起https://0.30000000000000004.com/

其他回答

一些统计数据与这个著名的双精度问题有关。

当使用0.1(从0.1到100)的步长将所有值(a+b)相加时,精度误差的概率约为15%。请注意,该错误可能会导致稍大或稍小的值。以下是一些示例:

0.1 + 0.2 = 0.30000000000000004 (BIGGER)
0.1 + 0.7 = 0.7999999999999999 (SMALLER)
...
1.7 + 1.9 = 3.5999999999999996 (SMALLER)
1.7 + 2.2 = 3.9000000000000004 (BIGGER)
...
3.2 + 3.6 = 6.800000000000001 (BIGGER)
3.2 + 4.4 = 7.6000000000000005 (BIGGER)

当使用0.1(从100到0.1)的步长减去所有值(a-b,其中a>b)时,我们有大约34%的精度误差。以下是一些示例:

0.6 - 0.2 = 0.39999999999999997 (SMALLER)
0.5 - 0.4 = 0.09999999999999998 (SMALLER)
...
2.1 - 0.2 = 1.9000000000000001 (BIGGER)
2.0 - 1.9 = 0.10000000000000009 (BIGGER)
...
100 - 99.9 = 0.09999999999999432 (SMALLER)
100 - 99.8 = 0.20000000000000284 (BIGGER)

*15%和34%确实是巨大的,所以当精度非常重要时,请始终使用BigDecimal。使用2个十进制数字(步骤0.01),情况会进一步恶化(18%和36%)。

它被打破的方式与你在小学学习并每天使用的十进制(以10为基础)表示法完全相同,只是以2为基础。

要理解,请考虑将1/3表示为十进制值。这是不可能做到的!世界将在你写完小数点后的3之前结束,所以我们写了一些地方,认为它足够准确。

以同样的方式,1/10(十进制0.1)不能以2为基数(二进制)精确地表示为“十进制”值;小数点后的重复模式将永远持续下去。该值不精确,因此无法使用常规浮点方法对其进行精确计算。与基数10一样,还有其他值也显示了这个问题。

浮点舍入错误。由于缺少5的素因子,0.1在基-2中不能像在基-10中那样精确地表示。正如1/3以十进制表示需要无限位数,但以3为基数表示为“0.1”,0.1以2为基数表示,而以10为基数不表示。计算机没有无限的内存。

这个问题的许多重复问题都是关于浮点舍入对特定数字的影响。在实践中,通过查看感兴趣的计算的确切结果而不是仅仅阅读它,更容易了解它的工作原理。一些语言提供了实现这一点的方法,例如在Java中将浮点或双精度转换为BigDecimal。

由于这是一个语言不可知的问题,因此需要语言不可知工具,例如十进制到浮点转换器。

将其应用于问题中的数字,视为双精度:

0.1转换为0.1000000000000000055511151231257827021181583404541015625,

0.2转换为0.200000000000000011102230246251565404236316680908203125,

0.3转换为0.299999999999999988897769753748434595763683319091796875,以及

0.300000000000000004转换为0.30000000000000000444089209850062616169452667236328125。

手动或在十进制计算器(如Full Precision calculator)中添加前两个数字,显示实际输入的精确和为0.30000000000000000166533453693773481063544750213623046875。

如果四舍五入到等于0.3,则舍入误差将为0.000000000000000027755575615628913510591702705078125。四舍五入等于0.300000000000000004也会产生舍入误差0.000000000000000027755575615628913510591702705078125。打成平手的规则适用。

返回浮点转换器,0.300000000000000004的原始十六进制是3fd333333333334,以偶数结尾,因此是正确的结果。

这些奇怪的数字之所以出现,是因为计算机使用二进制(以2为基数)数字系统进行计算,而我们使用十进制(以10为基数)。

大多数分数不能用二进制或十进制或两者精确表示。结果-四舍五入(但精确)的数字结果。