考虑以下代码:

0.1 + 0.2 == 0.3  ->  false
0.1 + 0.2         ->  0.30000000000000004

为什么会出现这些错误?


当前回答

不,不破,但大多数小数必须近似

总结

浮点运算是精确的,不幸的是,它与我们通常的以10为基数的数字表示法不太匹配,所以我们经常给它的输入与我们写的略有不同。

即使是像0.01、0.02、0.03、0.04…0.24这样的简单数字也不能精确地表示为二进制分数。如果你数到0.01、.02、.03…,直到你数到0.25,你才能得到以2为底的第一个分数。如果你尝试使用FP,那么你的0.01会稍微有点偏差,所以要将其中的25个相加到一个精确的0.25,就需要一长串的因果关系,包括保护位和舍入。很难预测,所以我们举手说“FP不准确”,但事实并非如此。

我们不断地给FP硬件一些在基数10中看似简单但在基数2中却是重复的分数。

这是怎么发生的?

当我们用十进制书写时,每个分数(特别是每个终止的小数)都是形式的有理数

          a/(2n x 5m)

在二进制中,我们只得到2n项,即:

a/2n

所以在十进制中,我们不能表示1/3。因为基数10包括2作为素因子,所以我们可以写成二进制分数的每个数字也可以写成基数10的分数。然而,我们写为10进制分数的任何东西都很难用二进制表示。在0.01、0.02、0.03…0.99的范围内,只有三个数字可以用我们的FP格式表示:0.25、0.50和0.75,因为它们是1/4、1/2和3/4,所有的数字都只使用2n项。

在base10中,我们不能表示1/3。但在二进制中,我们不能做1/10或1/3。

因此,虽然每一个二进制分数都可以用十进制来表示,但反过来却不正确。事实上,大多数小数在二进制中重复。

处理它

开发人员通常被要求进行<epsilon比较,更好的建议可能是舍入为整数值(在C库中:round()和round f(),即保持FP格式),然后进行比较。舍入到特定的小数部分长度可以解决大多数输出问题。

此外,在实数运算问题(FP是在早期昂贵的计算机上为之发明的问题)上,宇宙的物理常数和所有其他测量值只为相对较少的有效数字所知,因此整个问题空间无论如何都是“不精确的”。FP“精度”在这种应用中不是问题。

当人们尝试使用FP进行计数时,整个问题就真的出现了。它确实可以做到这一点,但前提是你坚持使用整数值,这会破坏使用它的意义。这就是为什么我们拥有所有这些小数软件库的原因。

我喜欢克里斯的披萨回答,因为它描述了实际问题,而不仅仅是关于“不准确”的通常手写。如果FP只是“不准确”,我们可以修复它,而且几十年前就已经做到了。我们没有这样做的原因是因为FP格式紧凑快速,是处理大量数字的最佳方式。此外,这也是太空时代和军备竞赛以及早期使用小型内存系统解决速度非常慢的计算机的大问题的尝试所留下的遗产。(有时,单个磁芯用于1位存储,但这是另一回事。)

结论

如果您只是在银行数豆子,那么首先使用十进制字符串表示的软件解决方案工作得非常好。但你不能这样做量子色动力学或空气动力学。

其他回答

一些统计数据与这个著名的双精度问题有关。

当使用0.1(从0.1到100)的步长将所有值(a+b)相加时,精度误差的概率约为15%。请注意,该错误可能会导致稍大或稍小的值。以下是一些示例:

0.1 + 0.2 = 0.30000000000000004 (BIGGER)
0.1 + 0.7 = 0.7999999999999999 (SMALLER)
...
1.7 + 1.9 = 3.5999999999999996 (SMALLER)
1.7 + 2.2 = 3.9000000000000004 (BIGGER)
...
3.2 + 3.6 = 6.800000000000001 (BIGGER)
3.2 + 4.4 = 7.6000000000000005 (BIGGER)

当使用0.1(从100到0.1)的步长减去所有值(a-b,其中a>b)时,我们有大约34%的精度误差。以下是一些示例:

0.6 - 0.2 = 0.39999999999999997 (SMALLER)
0.5 - 0.4 = 0.09999999999999998 (SMALLER)
...
2.1 - 0.2 = 1.9000000000000001 (BIGGER)
2.0 - 1.9 = 0.10000000000000009 (BIGGER)
...
100 - 99.9 = 0.09999999999999432 (SMALLER)
100 - 99.8 = 0.20000000000000284 (BIGGER)

*15%和34%确实是巨大的,所以当精度非常重要时,请始终使用BigDecimal。使用2个十进制数字(步骤0.01),情况会进一步恶化(18%和36%)。

已经发布了很多好的答案,但我想再补充一个。

并非所有数字都可以通过浮点数/双精度表示例如,在IEEE754浮点标准中,数字“0.2”将以单精度表示为“0.200000003”。

用于在引擎盖下存储实数的模型将浮点数表示为

即使您可以轻松键入0.2,FLT_RADIX和DBL_RADIX都是2;对于使用“IEEE二进制浮点运算标准(ISO/IEC Std 754-1985)”的带有FPU的计算机,不是10。

所以准确地表示这些数字有点困难。即使在没有任何中间计算的情况下显式指定此变量。

另一种方法是:使用64位来表示数字。因此,无法精确表示超过2**64=18446744073709551616个不同的数字。

然而,Math表示,在0和1之间已经有无限多的小数。IEE 754定义了一种编码,以有效地将这64位用于更大的数字空间加上NaN和+/-无穷大,因此在精确表示的数字之间存在间隙,只填充近似的数字。

不幸的是,0.3存在差距。

它被打破的方式与你在小学学习并每天使用的十进制(以10为基础)表示法完全相同,只是以2为基础。

要理解,请考虑将1/3表示为十进制值。这是不可能做到的!世界将在你写完小数点后的3之前结束,所以我们写了一些地方,认为它足够准确。

以同样的方式,1/10(十进制0.1)不能以2为基数(二进制)精确地表示为“十进制”值;小数点后的重复模式将永远持续下去。该值不精确,因此无法使用常规浮点方法对其进行精确计算。与基数10一样,还有其他值也显示了这个问题。

正常的算术是以10为基数的,所以小数表示十分、百分等。当你试图用二进制2为基数的算术表示浮点数时,你要处理的是半、四、八等。

在硬件中,浮点存储为整数尾数和指数。尾数表示有效数字。指数类似于科学记数法,但它使用的基数是2而不是10。例如,64.0将用尾数1和指数6表示。0.125将用尾数1和指数-3表示。

浮点小数必须加上2的负幂

0.1b = 0.5d
0.01b = 0.25d
0.001b = 0.125d
0.0001b = 0.0625d
0.00001b = 0.03125d

等等

在处理浮点运算时,通常使用误差增量而不是相等运算符。而不是

if(a==b) ...

你会使用

delta = 0.0001; // or some arbitrarily small amount
if(a - b > -delta && a - b < delta) ...