考虑以下代码:
0.1 + 0.2 == 0.3 -> false
0.1 + 0.2 -> 0.30000000000000004
为什么会出现这些错误?
考虑以下代码:
0.1 + 0.2 == 0.3 -> false
0.1 + 0.2 -> 0.30000000000000004
为什么会出现这些错误?
当前回答
已经发布了很多好的答案,但我想再补充一个。
并非所有数字都可以通过浮点数/双精度表示例如,在IEEE754浮点标准中,数字“0.2”将以单精度表示为“0.200000003”。
用于在引擎盖下存储实数的模型将浮点数表示为
即使您可以轻松键入0.2,FLT_RADIX和DBL_RADIX都是2;对于使用“IEEE二进制浮点运算标准(ISO/IEC Std 754-1985)”的带有FPU的计算机,不是10。
所以准确地表示这些数字有点困难。即使在没有任何中间计算的情况下显式指定此变量。
其他回答
另一种方法是:使用64位来表示数字。因此,无法精确表示超过2**64=18446744073709551616个不同的数字。
然而,Math表示,在0和1之间已经有无限多的小数。IEE 754定义了一种编码,以有效地将这64位用于更大的数字空间加上NaN和+/-无穷大,因此在精确表示的数字之间存在间隙,只填充近似的数字。
不幸的是,0.3存在差距。
它被打破的方式与你在小学学习并每天使用的十进制(以10为基础)表示法完全相同,只是以2为基础。
要理解,请考虑将1/3表示为十进制值。这是不可能做到的!世界将在你写完小数点后的3之前结束,所以我们写了一些地方,认为它足够准确。
以同样的方式,1/10(十进制0.1)不能以2为基数(二进制)精确地表示为“十进制”值;小数点后的重复模式将永远持续下去。该值不精确,因此无法使用常规浮点方法对其进行精确计算。与基数10一样,还有其他值也显示了这个问题。
正常的算术是以10为基数的,所以小数表示十分、百分等。当你试图用二进制2为基数的算术表示浮点数时,你要处理的是半、四、八等。
在硬件中,浮点存储为整数尾数和指数。尾数表示有效数字。指数类似于科学记数法,但它使用的基数是2而不是10。例如,64.0将用尾数1和指数6表示。0.125将用尾数1和指数-3表示。
浮点小数必须加上2的负幂
0.1b = 0.5d
0.01b = 0.25d
0.001b = 0.125d
0.0001b = 0.0625d
0.00001b = 0.03125d
等等
在处理浮点运算时,通常使用误差增量而不是相等运算符。而不是
if(a==b) ...
你会使用
delta = 0.0001; // or some arbitrarily small amount
if(a - b > -delta && a - b < delta) ...
我可以补充一下吗;人们总是认为这是一个计算机问题,但如果你用手(以10为基数)计算,你就不能得到(1/3+1/3=2/3)=真,除非你有无穷大可以将0.333…加到0.333……就像(1/10+2/10)一样==基数2的3/10问题,您将其截断为0.333+0.333=0.666,并可能将其舍入为0.667,这在技术上也是不准确的。
用三进制数,三分之三不是问题——也许有人会问为什么你的十进制数学被打破了。。。
一些统计数据与这个著名的双精度问题有关。
当使用0.1(从0.1到100)的步长将所有值(a+b)相加时,精度误差的概率约为15%。请注意,该错误可能会导致稍大或稍小的值。以下是一些示例:
0.1 + 0.2 = 0.30000000000000004 (BIGGER)
0.1 + 0.7 = 0.7999999999999999 (SMALLER)
...
1.7 + 1.9 = 3.5999999999999996 (SMALLER)
1.7 + 2.2 = 3.9000000000000004 (BIGGER)
...
3.2 + 3.6 = 6.800000000000001 (BIGGER)
3.2 + 4.4 = 7.6000000000000005 (BIGGER)
当使用0.1(从100到0.1)的步长减去所有值(a-b,其中a>b)时,我们有大约34%的精度误差。以下是一些示例:
0.6 - 0.2 = 0.39999999999999997 (SMALLER)
0.5 - 0.4 = 0.09999999999999998 (SMALLER)
...
2.1 - 0.2 = 1.9000000000000001 (BIGGER)
2.0 - 1.9 = 0.10000000000000009 (BIGGER)
...
100 - 99.9 = 0.09999999999999432 (SMALLER)
100 - 99.8 = 0.20000000000000284 (BIGGER)
*15%和34%确实是巨大的,所以当精度非常重要时,请始终使用BigDecimal。使用2个十进制数字(步骤0.01),情况会进一步恶化(18%和36%)。