考虑以下代码:

0.1 + 0.2 == 0.3  ->  false
0.1 + 0.2         ->  0.30000000000000004

为什么会出现这些错误?


当前回答

除了其他正确答案之外,您可能还需要考虑缩放值以避免浮点运算的问题。

例如:

var result = 1.0 + 2.0;     // result === 3.0 returns true

…而不是:

var result = 0.1 + 0.2;     // result === 0.3 returns false

在JavaScript中,表达式0.1+0.2===0.3返回false,但幸运的是,浮点中的整数运算是精确的,因此可以通过缩放来避免十进制表示错误。

作为一个实际的例子,为了避免精度至关重要的浮点问题,建议1将钱作为一个整数来处理:2550美分而不是25.50美元。


1 Douglas Crockford:JavaScript:好的部分:附录A——糟糕的部分(第105页)。

其他回答

十进制数(如0.1、0.2和0.3)在二进制编码浮点类型中没有精确表示。0.1和0.2的近似值之和与0.3的近似值不同,因此,0.1+0.2==0.3的错误在这里可以更清楚地看到:

#include <stdio.h>

int main() {
    printf("0.1 + 0.2 == 0.3 is %s\n", 0.1 + 0.2 == 0.3 ? "true" : "false");
    printf("0.1 is %.23f\n", 0.1);
    printf("0.2 is %.23f\n", 0.2);
    printf("0.1 + 0.2 is %.23f\n", 0.1 + 0.2);
    printf("0.3 is %.23f\n", 0.3);
    printf("0.3 - (0.1 + 0.2) is %g\n", 0.3 - (0.1 + 0.2));
    return 0;
}

输出:

0.1 + 0.2 == 0.3 is false
0.1 is 0.10000000000000000555112
0.2 is 0.20000000000000001110223
0.1 + 0.2 is 0.30000000000000004440892
0.3 is 0.29999999999999998889777
0.3 - (0.1 + 0.2) is -5.55112e-17

为了更可靠地计算这些计算,您需要对浮点值使用基于十进制的表示。C标准没有默认指定此类类型,而是作为技术报告中描述的扩展。

_Decimal32、_Decimal64和_Decimal128类型可能在您的系统上可用(例如,GCC在选定的目标上支持它们,但Clang在OS X上不支持它们)。

另一种方法是:使用64位来表示数字。因此,无法精确表示超过2**64=18446744073709551616个不同的数字。

然而,Math表示,在0和1之间已经有无限多的小数。IEE 754定义了一种编码,以有效地将这64位用于更大的数字空间加上NaN和+/-无穷大,因此在精确表示的数字之间存在间隙,只填充近似的数字。

不幸的是,0.3存在差距。

可以在数字计算机中实现的浮点数学必须使用实数的近似值及其运算。(标准版文件长达50多页,并有一个委员会处理其勘误表和进一步完善。)

这种近似是不同类型的近似的混合,每一种都可以被忽略或仔细考虑,因为其偏离精确性的特定方式。它还涉及到许多硬件和软件层面的明确例外情况,大多数人都会走过来假装没有注意到。

如果您需要无限精度(例如,使用数字π,而不是其许多较短的替代项之一),您应该编写或使用符号数学程序。

但是,如果您同意浮点数学有时在值和逻辑上是模糊的,错误可能会很快累积,并且您可以编写需求和测试来考虑这一点,那么您的代码可以经常通过FPU中的内容。

这个问题的许多重复问题都是关于浮点舍入对特定数字的影响。在实践中,通过查看感兴趣的计算的确切结果而不是仅仅阅读它,更容易了解它的工作原理。一些语言提供了实现这一点的方法,例如在Java中将浮点或双精度转换为BigDecimal。

由于这是一个语言不可知的问题,因此需要语言不可知工具,例如十进制到浮点转换器。

将其应用于问题中的数字,视为双精度:

0.1转换为0.1000000000000000055511151231257827021181583404541015625,

0.2转换为0.200000000000000011102230246251565404236316680908203125,

0.3转换为0.299999999999999988897769753748434595763683319091796875,以及

0.300000000000000004转换为0.30000000000000000444089209850062616169452667236328125。

手动或在十进制计算器(如Full Precision calculator)中添加前两个数字,显示实际输入的精确和为0.30000000000000000166533453693773481063544750213623046875。

如果四舍五入到等于0.3,则舍入误差将为0.000000000000000027755575615628913510591702705078125。四舍五入等于0.300000000000000004也会产生舍入误差0.000000000000000027755575615628913510591702705078125。打成平手的规则适用。

返回浮点转换器,0.300000000000000004的原始十六进制是3fd333333333334,以偶数结尾,因此是正确的结果。

我刚刚看到了关于浮点数的有趣问题:

考虑以下结果:

error = (2**53+1) - int(float(2**53+1))
>>> (2**53+1) - int(float(2**53+1))
1

当2**53+1时,我们可以清楚地看到一个断点——直到2**53,所有的工作都正常。

>>> (2**53) - int(float(2**53))
0

发生这种情况的原因是双精度二进制:IEEE 754双精度二进制浮点格式:binary64

从维基百科的双精度浮点格式页面:

双精度二进制浮点是PC上常用的格式,因为它的范围比单精度浮点更广,尽管它的性能和带宽成本很高。与单精度浮点格式一样,与相同大小的整数格式相比,它缺少整数的精度。它通常简称为double。IEEE 754标准规定二进制64具有:符号位:1位指数:11位有效精度:53位(显式存储52位)具有给定偏置指数和52位分数的给定64位双精度数据假设的实际值为或

感谢@aguest向我指出了这一点。