考虑以下代码:
0.1 + 0.2 == 0.3 -> false
0.1 + 0.2 -> 0.30000000000000004
为什么会出现这些错误?
考虑以下代码:
0.1 + 0.2 == 0.3 -> false
0.1 + 0.2 -> 0.30000000000000004
为什么会出现这些错误?
当前回答
它被打破的方式与你在小学学习并每天使用的十进制(以10为基础)表示法完全相同,只是以2为基础。
要理解,请考虑将1/3表示为十进制值。这是不可能做到的!世界将在你写完小数点后的3之前结束,所以我们写了一些地方,认为它足够准确。
以同样的方式,1/10(十进制0.1)不能以2为基数(二进制)精确地表示为“十进制”值;小数点后的重复模式将永远持续下去。该值不精确,因此无法使用常规浮点方法对其进行精确计算。与基数10一样,还有其他值也显示了这个问题。
其他回答
正常的算术是以10为基数的,所以小数表示十分、百分等。当你试图用二进制2为基数的算术表示浮点数时,你要处理的是半、四、八等。
在硬件中,浮点存储为整数尾数和指数。尾数表示有效数字。指数类似于科学记数法,但它使用的基数是2而不是10。例如,64.0将用尾数1和指数6表示。0.125将用尾数1和指数-3表示。
浮点小数必须加上2的负幂
0.1b = 0.5d
0.01b = 0.25d
0.001b = 0.125d
0.0001b = 0.0625d
0.00001b = 0.03125d
等等
在处理浮点运算时,通常使用误差增量而不是相等运算符。而不是
if(a==b) ...
你会使用
delta = 0.0001; // or some arbitrarily small amount
if(a - b > -delta && a - b < delta) ...
由于这篇文章对当前的浮点实现进行了一般性的讨论,我想补充一下,有一些项目正在解决它们的问题。
看看https://posithub.org/例如,它展示了一种称为posit(及其前身unum)的数字类型,它承诺以更少的比特提供更好的精度。如果我的理解是正确的,它也解决了问题中的问题。非常有趣的项目,背后的人是数学家约翰·古斯塔夫森博士。整个过程都是开源的,用C/C++、Python、Julia和C#实现了许多实际的实现(https://hastlayer.com/arithmetics).
鉴于没有人提到这一点。。。
一些高级语言(如Python和Java)提供了克服二进制浮点限制的工具。例如:
Python的十进制模块和Java的BigDecimal类,它们在内部使用十进制表示法(与二进制表示法相反)表示数字。两者都有有限的精度,因此它们仍然容易出错,但它们解决了二进制浮点运算中最常见的问题。小数在处理金钱时很好:10美分加20美分总是正好是30美分:>>> 0.1 + 0.2 == 0.3错误>>>十进制('0.1')+十进制('0.2')==十进制('0.3')真的Python的十进制模块基于IEEE标准854-1987。Python的分数模块和Apache Common的BigFraction类。两者都将有理数表示为(分子、分母)对,它们可能给出比十进制浮点运算更精确的结果。
这两种解决方案都不是完美的(特别是如果我们考虑性能,或者如果我们需要非常高的精度),但它们仍然解决了二进制浮点运算的大量问题。
我的解决方法:
function add(a, b, precision) {
var x = Math.pow(10, precision || 2);
return (Math.round(a * x) + Math.round(b * x)) / x;
}
精度是指在加法过程中要保留小数点后的位数。
我刚刚看到了关于浮点数的有趣问题:
考虑以下结果:
error = (2**53+1) - int(float(2**53+1))
>>> (2**53+1) - int(float(2**53+1))
1
当2**53+1时,我们可以清楚地看到一个断点——直到2**53,所有的工作都正常。
>>> (2**53) - int(float(2**53))
0
发生这种情况的原因是双精度二进制:IEEE 754双精度二进制浮点格式:binary64
从维基百科的双精度浮点格式页面:
双精度二进制浮点是PC上常用的格式,因为它的范围比单精度浮点更广,尽管它的性能和带宽成本很高。与单精度浮点格式一样,与相同大小的整数格式相比,它缺少整数的精度。它通常简称为double。IEEE 754标准规定二进制64具有:符号位:1位指数:11位有效精度:53位(显式存储52位)具有给定偏置指数和52位分数的给定64位双精度数据假设的实际值为或
感谢@aguest向我指出了这一点。