考虑以下代码:

0.1 + 0.2 == 0.3  ->  false
0.1 + 0.2         ->  0.30000000000000004

为什么会出现这些错误?


当前回答

可以在数字计算机中实现的浮点数学必须使用实数的近似值及其运算。(标准版文件长达50多页,并有一个委员会处理其勘误表和进一步完善。)

这种近似是不同类型的近似的混合,每一种都可以被忽略或仔细考虑,因为其偏离精确性的特定方式。它还涉及到许多硬件和软件层面的明确例外情况,大多数人都会走过来假装没有注意到。

如果您需要无限精度(例如,使用数字π,而不是其许多较短的替代项之一),您应该编写或使用符号数学程序。

但是,如果您同意浮点数学有时在值和逻辑上是模糊的,错误可能会很快累积,并且您可以编写需求和测试来考虑这一点,那么您的代码可以经常通过FPU中的内容。

其他回答

浮点舍入错误。由于缺少5的素因子,0.1在基-2中不能像在基-10中那样精确地表示。正如1/3以十进制表示需要无限位数,但以3为基数表示为“0.1”,0.1以2为基数表示,而以10为基数不表示。计算机没有无限的内存。

简而言之,这是因为:

浮点数不能以二进制精确表示所有小数

因此,就像10/3不精确地存在于基数10中(它将是3.33……重复出现)一样,1/10也不存在于二进制中。

那又怎么样?如何处理?有什么解决办法吗?

为了提供最佳解决方案,我可以说我发现了以下方法:

parseFloat((0.1 + 0.2).toFixed(10)) => Will return 0.3

让我解释一下为什么这是最好的解决方案。正如上面提到的其他答案一样,使用现成的Javascript toFixed()函数来解决问题是一个好主意。但很可能你会遇到一些问题。

假设你将两个浮点数相加,如0.2和0.7,这里是:0.2+0.7=0.8999999999999999。

您的预期结果是0.9,这意味着您需要一个精度为1位数的结果。因此,您应该使用(0.2+0.7).tfixed(1)但是不能只给toFixed()一个特定的参数,因为它取决于给定的数字,例如

0.22 + 0.7 = 0.9199999999999999

在本例中,您需要2位精度,因此它应该为Fixed(2),那么,适合每个给定浮点数的参数应该是什么?

你可以说在每种情况下都是10:

(0.2 + 0.7).toFixed(10) => Result will be "0.9000000000"

该死你打算怎么处理那些9后不需要的零?现在是将其转换为浮动的时候了,以实现您的愿望:

parseFloat((0.2 + 0.7).toFixed(10)) => Result will be 0.9

既然找到了解决方案,那么最好将其作为如下函数提供:

function floatify(number){
           return parseFloat((number).toFixed(10));
        }
    

让我们自己试试吧:函数floatify(数字){return parseFloat((number).toFixed(10));}函数addUp(){var number1=+$(“#number1”).val();var number2=+$(“#number2”).val();var expectedResult=number1+number2;var expectedResult=浮动(number1+number2);$(“#意外结果”).text(意外结果);$(“#expectedResult”).text(expectedResult);}addUp();输入{宽度:50px;}#预期结果{颜色:绿色;}#未预期结果{颜色:红色;}<script src=“https://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js“></script><input id=“number1”value=“0.2”onclick=“addUp()”onkeyup=“addUp()”/>+<input id=“number2”value=“0.7”onclick=“addUp()”onkeyup=“addUp()”/>=<p>预期结果:<span id=“expectedResult”></span></p><p>意外结果:<span id=“expectedResult”></span></p>

您可以这样使用:

var x = 0.2 + 0.7;
floatify(x);  => Result: 0.9

正如W3SCHOOLS所建议的,还有另一种解决方案,您可以通过乘法和除法来解决上述问题:

var x = (0.2 * 10 + 0.1 * 10) / 10;       // x will be 0.3

请记住,(0.2+0.1)*10/10根本不起作用,尽管看起来是一样的!我更喜欢第一种解决方案,因为我可以将其作为一个函数应用,将输入浮点转换为精确的输出浮点。

仅供参考,乘法也存在同样的问题,例如0.09*10返回0.8999999999999999。应用flotify函数作为解决方法:flotify(0.09*10)返回0.9

在硬件级别,浮点数表示为二进制数的分数(以2为基数)。例如,小数:

0.125

具有1/10+2/100+5/1000的值,并且以相同的方式,具有二进制分数:

0.001

值为0/2+0/4+1/8。这两个分数具有相同的值,唯一的区别是第一个是小数,第二个是二进制分数。

不幸的是,大多数十进制分数不能用二进制分数表示。因此,通常情况下,您给出的浮点数仅近似于存储在机器中的二进制分数。

这个问题在基础10中更容易解决。以分数1/3为例。您可以将其近似为小数:

0.3

或更好,

0.33

或更好,

0.333

无论你写了多少个小数点,结果永远不会精确到1/3,但这是一个总是更接近的估计。

同样,无论使用多少个以2为基数的小数位数,小数值0.1都不能精确地表示为二进制小数。在基数2中,1/10是以下周期数:

0.0001100110011001100110011001100110011001100110011 ...

停止在任何有限数量的比特,你会得到一个近似值。

对于Python,在典型的机器上,53位用于浮点的精度,因此输入小数0.1时存储的值是二进制小数。

0.00011001100110011001100110011001100110011001100110011010

其接近但不完全等于1/10。

很容易忘记存储的值是原始小数的近似值,因为在解释器中显示浮点的方式。Python只显示二进制存储值的十进制近似值。如果Python要输出存储为0.1的二进制近似值的真正十进制值,它将输出:

>>> 0.1
0.1000000000000000055511151231257827021181583404541015625

这比大多数人预期的小数位数要多得多,因此Python显示舍入值以提高可读性:

>>> 0.1
0.1

重要的是要理解,在现实中这是一种错觉:存储的值不完全是1/10,只是在显示器上存储的值被舍入。当您使用这些值执行算术运算时,这一点就会变得明显:

>>> 0.1 + 0.2
0.30000000000000004

这种行为是机器浮点表示的本质所固有的:它不是Python中的错误,也不是代码中的错误。你可以在所有其他语言中观察到相同类型的行为​​使用硬件支持计算浮点数(尽管有些语言​​默认情况下不使差异可见或在所有显示模式下不可见)。

另一个令人惊讶的地方就在这一点上。例如,如果尝试将值2.675舍入到两位小数,则会得到

>>> round (2.675, 2)
2.67

round()原语的文档表明它舍入到离零最近的值。由于小数正好在2.67和2.68之间的一半,因此应该可以得到2.68(二进制近似值)。然而,情况并非如此,因为当小数2.675转换为浮点时,它由精确值为:

2.67499999999999982236431605997495353221893310546875

由于近似值比2.68略接近2.67,因此舍入值降低。

如果您处于小数向下舍入的情况,那么应该使用十进制模块。顺便说一下,十进制模块还提供了一种方便的方式来“查看”为任何浮点存储的确切值。

>>> from decimal import Decimal
>>> Decimal (2.675)
>>> Decimal ('2.67499999999999982236431605997495353221893310546875')

0.1不是精确存储在1/10中这一事实的另一个结果是十个值的总和​​0.1也不等于1.0:

>>> sum = 0.0
>>> for i in range (10):
... sum + = 0.1
...>>> sum
0.9999999999999999

二进制浮点数的算术有很多这样的惊喜。“0.1”的问题将在下文“表示错误”一节中详细解释。有关此类惊喜的更完整列表,请参阅浮点运算的危险。

确实没有简单的答案,但是不要对浮动虚拟数字过分怀疑!在Python中,浮点数操作中的错误是由底层硬件造成的,在大多数机器上,每次操作的错误率不超过1/2*53。这对于大多数任务来说都是非常必要的,但您应该记住,这些操作不是十进制操作,并且对浮点数字的每一次操作都可能会出现新的错误。

尽管存在病态的情况,但对于大多数常见的用例,您只需在显示器上舍入到所需的小数位数,就可以在最后得到预期的结果。有关如何显示浮点数的详细控制,请参阅字符串格式语法以了解str.format()方法的格式规范。

答案的这一部分详细解释了“0.1”的示例,并展示了如何自己对此类案例进行精确分析。我们假设您熟悉浮点数的二进制表示。术语表示错误意味着大多数小数不能用二进制精确表示。这就是为什么Python(或Perl、C、C++、Java、Fortran等)通常不会以十进制显示精确结果的主要原因:

>>> 0.1 + 0.2
0.30000000000000004

为什么?1/10和2/10不能用二进制分数精确表示。然而,今天(2010年7月)所有的机器都遵循IEEE-754标准来计算浮点数。大多数平台使用“IEEE-754双精度”来表示Python浮点。双精度IEEE-754使用53位精度,因此在读取时,计算机尝试将0.1转换为J/2*N形式的最接近分数,J正好是53位的整数。重写:

1/10 ~ = J / (2 ** N)

in :

J ~ = 2 ** N / 10

记住J正好是53位(所以>=2**52但<2**53),N的最佳可能值是56:

>>> 2 ** 52
4503599627370496
>>> 2 ** 53
9007199254740992
>>> 2 ** 56/10
7205759403792793

因此,56是N的唯一可能值,正好为J保留53位。因此,J的最佳可能值是这个商,四舍五入:

>>> q, r = divmod (2 ** 56, 10)
>>> r
6

由于进位大于10的一半,通过四舍五入获得最佳近似值:

>>> q + 1
7205759403792794

因此,“IEEE-754双精度”中1/10的最佳近似值为2**56以上,即:

7205759403792794/72057594037927936

注意,由于四舍五入是向上进行的,结果实际上略大于1/10;如果我们没有四舍五入,这个商会略小于1/10。但无论如何都不是1/10!

因此,计算机从未“看到”1/10:它看到的是上面给出的精确分数,这是使用“IEEE-754”中的双精度浮点数的最佳近似值:

>>>. 1 * 2 ** 56
7205759403792794.0

如果我们将这个分数乘以10**30,我们可以观察到这些值​​它的30位小数具有很强的权重。

>>> 7205759403792794 * 10 ** 30 // 2 ** 56
100000000000000005551115123125L

这意味着存储在计算机中的精确值近似等于十进制值0.100000000000000005551115123125。在Python 2.7和Python 3.1之前的版本中,Python舍入这些值​​到17位有效小数,显示“0.10000000000000001”。在当前版本的Python中,显示的值是分数尽可能短的值,当转换回二进制时,给出的表示形式完全相同,只需显示“0.1”。

这些奇怪的数字之所以出现,是因为计算机使用二进制(以2为基数)数字系统进行计算,而我们使用十进制(以10为基数)。

大多数分数不能用二进制或十进制或两者精确表示。结果-四舍五入(但精确)的数字结果。

不,不破,但大多数小数必须近似

总结

浮点运算是精确的,不幸的是,它与我们通常的以10为基数的数字表示法不太匹配,所以我们经常给它的输入与我们写的略有不同。

即使是像0.01、0.02、0.03、0.04…0.24这样的简单数字也不能精确地表示为二进制分数。如果你数到0.01、.02、.03…,直到你数到0.25,你才能得到以2为底的第一个分数。如果你尝试使用FP,那么你的0.01会稍微有点偏差,所以要将其中的25个相加到一个精确的0.25,就需要一长串的因果关系,包括保护位和舍入。很难预测,所以我们举手说“FP不准确”,但事实并非如此。

我们不断地给FP硬件一些在基数10中看似简单但在基数2中却是重复的分数。

这是怎么发生的?

当我们用十进制书写时,每个分数(特别是每个终止的小数)都是形式的有理数

          a/(2n x 5m)

在二进制中,我们只得到2n项,即:

a/2n

所以在十进制中,我们不能表示1/3。因为基数10包括2作为素因子,所以我们可以写成二进制分数的每个数字也可以写成基数10的分数。然而,我们写为10进制分数的任何东西都很难用二进制表示。在0.01、0.02、0.03…0.99的范围内,只有三个数字可以用我们的FP格式表示:0.25、0.50和0.75,因为它们是1/4、1/2和3/4,所有的数字都只使用2n项。

在base10中,我们不能表示1/3。但在二进制中,我们不能做1/10或1/3。

因此,虽然每一个二进制分数都可以用十进制来表示,但反过来却不正确。事实上,大多数小数在二进制中重复。

处理它

开发人员通常被要求进行<epsilon比较,更好的建议可能是舍入为整数值(在C库中:round()和round f(),即保持FP格式),然后进行比较。舍入到特定的小数部分长度可以解决大多数输出问题。

此外,在实数运算问题(FP是在早期昂贵的计算机上为之发明的问题)上,宇宙的物理常数和所有其他测量值只为相对较少的有效数字所知,因此整个问题空间无论如何都是“不精确的”。FP“精度”在这种应用中不是问题。

当人们尝试使用FP进行计数时,整个问题就真的出现了。它确实可以做到这一点,但前提是你坚持使用整数值,这会破坏使用它的意义。这就是为什么我们拥有所有这些小数软件库的原因。

我喜欢克里斯的披萨回答,因为它描述了实际问题,而不仅仅是关于“不准确”的通常手写。如果FP只是“不准确”,我们可以修复它,而且几十年前就已经做到了。我们没有这样做的原因是因为FP格式紧凑快速,是处理大量数字的最佳方式。此外,这也是太空时代和军备竞赛以及早期使用小型内存系统解决速度非常慢的计算机的大问题的尝试所留下的遗产。(有时,单个磁芯用于1位存储,但这是另一回事。)

结论

如果您只是在银行数豆子,那么首先使用十进制字符串表示的软件解决方案工作得非常好。但你不能这样做量子色动力学或空气动力学。