考虑以下代码:

0.1 + 0.2 == 0.3  ->  false
0.1 + 0.2         ->  0.30000000000000004

为什么会出现这些错误?


当前回答

这里的大多数答案都用非常枯燥的技术术语来解决这个问题。我想用正常人能够理解的方式来解决这个问题。

想象一下,你正试图把披萨切成薄片。你有一个机器人披萨切割机,可以将披萨切成两半。它可以将整个披萨减半,也可以将现有的披萨减半,但无论如何,减半总是准确的。

那台披萨切割机动作非常精细,如果你从一整块披萨开始,然后将其减半,然后继续每次将最小的披萨片减半,你可以在披萨片太小甚至无法实现高精度功能之前,将其减半53次。此时,您不能再将非常薄的切片减半,但必须按原样包含或排除它。

现在,你如何将所有的切片以这样一种方式分割,使其达到披萨的十分之一(0.1)或五分之一(0.2)?真的想一想,试着解决它。如果你手边有一个神话般的精密披萨切割机,你甚至可以尝试使用真正的披萨


当然,大多数有经验的程序员都知道真正的答案,那就是,无论你切得多细,都无法用这些切片拼凑出十分之一或五分之一的披萨。你可以做一个非常好的近似值,如果你把0.1的近似值和0.2的近似值相加,你会得到非常好的0.3的近似值。

对于双精度数字(允许您将披萨减半53次的精度),小于或大于0.1的数字分别为0.09999999999999999167332731531132594682276248931884765625和0.1000000000000000055511151231257827021181583404541015625。后者比前者更接近0.1,因此,如果输入值为0.1,数字解析器将倾向于后者。

(这两个数字之间的区别是“最小切片”,我们必须决定是否包含,这会引入向上的偏差,或者排除,这会带来向下的偏差。最小切片的技术术语是ulp。)

在0.2的情况下,数字都是相同的,只是放大了2倍。同样,我们赞成略高于0.2的值。

注意,在这两种情况下,0.1和0.2的近似值都有轻微的向上偏差。如果我们加上足够多的这些偏差,它们会将数字推离我们想要的越来越远,事实上,在0.1+0.2的情况下,偏差足够高,从而导致的数字不再是最接近0.3的数字。

特别是,0.1+0.2实际上是0.1000000000000000055511151231257827021181583404541015625+0.0200000000000000011102230246251565404236316680908203125=0.30000000000000000444089209850062616169452667236328125,而最接近0.3的数字实际上是0.29999999999988897769753748434595763683319091796875。


另外,一些编程语言还提供了披萨切割机,可以将披萨切成十分之一。虽然这种披萨切刀并不常见,但如果你有机会切到一个,那么你应该在切到十分之一或五分之一的披萨片非常重要的时候使用它。

(最初发布在Quora上。)

其他回答

你试过胶带解决方案了吗?

尝试确定错误发生的时间,并用简短的if语句修复它们,这并不漂亮,但对于某些问题,这是唯一的解决方案,这就是其中之一。

 if( (n * 0.1) < 100.0 ) { return n * 0.1 - 0.000000000000001 ;}
                    else { return n * 0.1 + 0.000000000000001 ;}    

我在c#的一个科学模拟项目中也遇到过同样的问题,我可以告诉你,如果你忽视蝴蝶效应,它会变成一条大胖龙,咬你一口**

我刚刚看到了关于浮点数的有趣问题:

考虑以下结果:

error = (2**53+1) - int(float(2**53+1))
>>> (2**53+1) - int(float(2**53+1))
1

当2**53+1时,我们可以清楚地看到一个断点——直到2**53,所有的工作都正常。

>>> (2**53) - int(float(2**53))
0

发生这种情况的原因是双精度二进制:IEEE 754双精度二进制浮点格式:binary64

从维基百科的双精度浮点格式页面:

双精度二进制浮点是PC上常用的格式,因为它的范围比单精度浮点更广,尽管它的性能和带宽成本很高。与单精度浮点格式一样,与相同大小的整数格式相比,它缺少整数的精度。它通常简称为double。IEEE 754标准规定二进制64具有:符号位:1位指数:11位有效精度:53位(显式存储52位)具有给定偏置指数和52位分数的给定64位双精度数据假设的实际值为或

感谢@aguest向我指出了这一点。

浮点舍入错误。从每个计算机科学家应该知道的浮点运算:

将无限多的实数压缩成有限位数需要近似表示。虽然有无限多的整数,但在大多数程序中,整数计算的结果可以存储在32位中。相反,给定任何固定位数,大多数使用实数的计算将产生无法使用那么多位数精确表示的量。因此,浮点计算的结果必须经常舍入,以适应其有限表示。这种舍入误差是浮点计算的特征。

这里的大多数答案都用非常枯燥的技术术语来解决这个问题。我想用正常人能够理解的方式来解决这个问题。

想象一下,你正试图把披萨切成薄片。你有一个机器人披萨切割机,可以将披萨切成两半。它可以将整个披萨减半,也可以将现有的披萨减半,但无论如何,减半总是准确的。

那台披萨切割机动作非常精细,如果你从一整块披萨开始,然后将其减半,然后继续每次将最小的披萨片减半,你可以在披萨片太小甚至无法实现高精度功能之前,将其减半53次。此时,您不能再将非常薄的切片减半,但必须按原样包含或排除它。

现在,你如何将所有的切片以这样一种方式分割,使其达到披萨的十分之一(0.1)或五分之一(0.2)?真的想一想,试着解决它。如果你手边有一个神话般的精密披萨切割机,你甚至可以尝试使用真正的披萨


当然,大多数有经验的程序员都知道真正的答案,那就是,无论你切得多细,都无法用这些切片拼凑出十分之一或五分之一的披萨。你可以做一个非常好的近似值,如果你把0.1的近似值和0.2的近似值相加,你会得到非常好的0.3的近似值。

对于双精度数字(允许您将披萨减半53次的精度),小于或大于0.1的数字分别为0.09999999999999999167332731531132594682276248931884765625和0.1000000000000000055511151231257827021181583404541015625。后者比前者更接近0.1,因此,如果输入值为0.1,数字解析器将倾向于后者。

(这两个数字之间的区别是“最小切片”,我们必须决定是否包含,这会引入向上的偏差,或者排除,这会带来向下的偏差。最小切片的技术术语是ulp。)

在0.2的情况下,数字都是相同的,只是放大了2倍。同样,我们赞成略高于0.2的值。

注意,在这两种情况下,0.1和0.2的近似值都有轻微的向上偏差。如果我们加上足够多的这些偏差,它们会将数字推离我们想要的越来越远,事实上,在0.1+0.2的情况下,偏差足够高,从而导致的数字不再是最接近0.3的数字。

特别是,0.1+0.2实际上是0.1000000000000000055511151231257827021181583404541015625+0.0200000000000000011102230246251565404236316680908203125=0.30000000000000000444089209850062616169452667236328125,而最接近0.3的数字实际上是0.29999999999988897769753748434595763683319091796875。


另外,一些编程语言还提供了披萨切割机,可以将披萨切成十分之一。虽然这种披萨切刀并不常见,但如果你有机会切到一个,那么你应该在切到十分之一或五分之一的披萨片非常重要的时候使用它。

(最初发布在Quora上。)

简而言之,这是因为:

浮点数不能以二进制精确表示所有小数

因此,就像10/3不精确地存在于基数10中(它将是3.33……重复出现)一样,1/10也不存在于二进制中。

那又怎么样?如何处理?有什么解决办法吗?

为了提供最佳解决方案,我可以说我发现了以下方法:

parseFloat((0.1 + 0.2).toFixed(10)) => Will return 0.3

让我解释一下为什么这是最好的解决方案。正如上面提到的其他答案一样,使用现成的Javascript toFixed()函数来解决问题是一个好主意。但很可能你会遇到一些问题。

假设你将两个浮点数相加,如0.2和0.7,这里是:0.2+0.7=0.8999999999999999。

您的预期结果是0.9,这意味着您需要一个精度为1位数的结果。因此,您应该使用(0.2+0.7).tfixed(1)但是不能只给toFixed()一个特定的参数,因为它取决于给定的数字,例如

0.22 + 0.7 = 0.9199999999999999

在本例中,您需要2位精度,因此它应该为Fixed(2),那么,适合每个给定浮点数的参数应该是什么?

你可以说在每种情况下都是10:

(0.2 + 0.7).toFixed(10) => Result will be "0.9000000000"

该死你打算怎么处理那些9后不需要的零?现在是将其转换为浮动的时候了,以实现您的愿望:

parseFloat((0.2 + 0.7).toFixed(10)) => Result will be 0.9

既然找到了解决方案,那么最好将其作为如下函数提供:

function floatify(number){
           return parseFloat((number).toFixed(10));
        }
    

让我们自己试试吧:函数floatify(数字){return parseFloat((number).toFixed(10));}函数addUp(){var number1=+$(“#number1”).val();var number2=+$(“#number2”).val();var expectedResult=number1+number2;var expectedResult=浮动(number1+number2);$(“#意外结果”).text(意外结果);$(“#expectedResult”).text(expectedResult);}addUp();输入{宽度:50px;}#预期结果{颜色:绿色;}#未预期结果{颜色:红色;}<script src=“https://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js“></script><input id=“number1”value=“0.2”onclick=“addUp()”onkeyup=“addUp()”/>+<input id=“number2”value=“0.7”onclick=“addUp()”onkeyup=“addUp()”/>=<p>预期结果:<span id=“expectedResult”></span></p><p>意外结果:<span id=“expectedResult”></span></p>

您可以这样使用:

var x = 0.2 + 0.7;
floatify(x);  => Result: 0.9

正如W3SCHOOLS所建议的,还有另一种解决方案,您可以通过乘法和除法来解决上述问题:

var x = (0.2 * 10 + 0.1 * 10) / 10;       // x will be 0.3

请记住,(0.2+0.1)*10/10根本不起作用,尽管看起来是一样的!我更喜欢第一种解决方案,因为我可以将其作为一个函数应用,将输入浮点转换为精确的输出浮点。

仅供参考,乘法也存在同样的问题,例如0.09*10返回0.8999999999999999。应用flotify函数作为解决方法:flotify(0.09*10)返回0.9