考虑以下代码:
0.1 + 0.2 == 0.3 -> false
0.1 + 0.2 -> 0.30000000000000004
为什么会出现这些错误?
考虑以下代码:
0.1 + 0.2 == 0.3 -> false
0.1 + 0.2 -> 0.30000000000000004
为什么会出现这些错误?
当前回答
这些奇怪的数字之所以出现,是因为计算机使用二进制(以2为基数)数字系统进行计算,而我们使用十进制(以10为基数)。
大多数分数不能用二进制或十进制或两者精确表示。结果-四舍五入(但精确)的数字结果。
其他回答
可以在数字计算机中实现的浮点数学必须使用实数的近似值及其运算。(标准版文件长达50多页,并有一个委员会处理其勘误表和进一步完善。)
这种近似是不同类型的近似的混合,每一种都可以被忽略或仔细考虑,因为其偏离精确性的特定方式。它还涉及到许多硬件和软件层面的明确例外情况,大多数人都会走过来假装没有注意到。
如果您需要无限精度(例如,使用数字π,而不是其许多较短的替代项之一),您应该编写或使用符号数学程序。
但是,如果您同意浮点数学有时在值和逻辑上是模糊的,错误可能会很快累积,并且您可以编写需求和测试来考虑这一点,那么您的代码可以经常通过FPU中的内容。
简而言之,这是因为:
浮点数不能以二进制精确表示所有小数
因此,就像10/3不精确地存在于基数10中(它将是3.33……重复出现)一样,1/10也不存在于二进制中。
那又怎么样?如何处理?有什么解决办法吗?
为了提供最佳解决方案,我可以说我发现了以下方法:
parseFloat((0.1 + 0.2).toFixed(10)) => Will return 0.3
让我解释一下为什么这是最好的解决方案。正如上面提到的其他答案一样,使用现成的Javascript toFixed()函数来解决问题是一个好主意。但很可能你会遇到一些问题。
假设你将两个浮点数相加,如0.2和0.7,这里是:0.2+0.7=0.8999999999999999。
您的预期结果是0.9,这意味着您需要一个精度为1位数的结果。因此,您应该使用(0.2+0.7).tfixed(1)但是不能只给toFixed()一个特定的参数,因为它取决于给定的数字,例如
0.22 + 0.7 = 0.9199999999999999
在本例中,您需要2位精度,因此它应该为Fixed(2),那么,适合每个给定浮点数的参数应该是什么?
你可以说在每种情况下都是10:
(0.2 + 0.7).toFixed(10) => Result will be "0.9000000000"
该死你打算怎么处理那些9后不需要的零?现在是将其转换为浮动的时候了,以实现您的愿望:
parseFloat((0.2 + 0.7).toFixed(10)) => Result will be 0.9
既然找到了解决方案,那么最好将其作为如下函数提供:
function floatify(number){
return parseFloat((number).toFixed(10));
}
让我们自己试试吧:函数floatify(数字){return parseFloat((number).toFixed(10));}函数addUp(){var number1=+$(“#number1”).val();var number2=+$(“#number2”).val();var expectedResult=number1+number2;var expectedResult=浮动(number1+number2);$(“#意外结果”).text(意外结果);$(“#expectedResult”).text(expectedResult);}addUp();输入{宽度:50px;}#预期结果{颜色:绿色;}#未预期结果{颜色:红色;}<script src=“https://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js“></script><input id=“number1”value=“0.2”onclick=“addUp()”onkeyup=“addUp()”/>+<input id=“number2”value=“0.7”onclick=“addUp()”onkeyup=“addUp()”/>=<p>预期结果:<span id=“expectedResult”></span></p><p>意外结果:<span id=“expectedResult”></span></p>
您可以这样使用:
var x = 0.2 + 0.7;
floatify(x); => Result: 0.9
正如W3SCHOOLS所建议的,还有另一种解决方案,您可以通过乘法和除法来解决上述问题:
var x = (0.2 * 10 + 0.1 * 10) / 10; // x will be 0.3
请记住,(0.2+0.1)*10/10根本不起作用,尽管看起来是一样的!我更喜欢第一种解决方案,因为我可以将其作为一个函数应用,将输入浮点转换为精确的输出浮点。
仅供参考,乘法也存在同样的问题,例如0.09*10返回0.8999999999999999。应用flotify函数作为解决方法:flotify(0.09*10)返回0.9
它被打破的方式与你在小学学习并每天使用的十进制(以10为基础)表示法完全相同,只是以2为基础。
要理解,请考虑将1/3表示为十进制值。这是不可能做到的!世界将在你写完小数点后的3之前结束,所以我们写了一些地方,认为它足够准确。
以同样的方式,1/10(十进制0.1)不能以2为基数(二进制)精确地表示为“十进制”值;小数点后的重复模式将永远持续下去。该值不精确,因此无法使用常规浮点方法对其进行精确计算。与基数10一样,还有其他值也显示了这个问题。
浮点舍入错误。从每个计算机科学家应该知道的浮点运算:
将无限多的实数压缩成有限位数需要近似表示。虽然有无限多的整数,但在大多数程序中,整数计算的结果可以存储在32位中。相反,给定任何固定位数,大多数使用实数的计算将产生无法使用那么多位数精确表示的量。因此,浮点计算的结果必须经常舍入,以适应其有限表示。这种舍入误差是浮点计算的特征。
鉴于没有人提到这一点。。。
一些高级语言(如Python和Java)提供了克服二进制浮点限制的工具。例如:
Python的十进制模块和Java的BigDecimal类,它们在内部使用十进制表示法(与二进制表示法相反)表示数字。两者都有有限的精度,因此它们仍然容易出错,但它们解决了二进制浮点运算中最常见的问题。小数在处理金钱时很好:10美分加20美分总是正好是30美分:>>> 0.1 + 0.2 == 0.3错误>>>十进制('0.1')+十进制('0.2')==十进制('0.3')真的Python的十进制模块基于IEEE标准854-1987。Python的分数模块和Apache Common的BigFraction类。两者都将有理数表示为(分子、分母)对,它们可能给出比十进制浮点运算更精确的结果。
这两种解决方案都不是完美的(特别是如果我们考虑性能,或者如果我们需要非常高的精度),但它们仍然解决了二进制浮点运算的大量问题。