考虑以下代码:
0.1 + 0.2 == 0.3 -> false
0.1 + 0.2 -> 0.30000000000000004
为什么会出现这些错误?
考虑以下代码:
0.1 + 0.2 == 0.3 -> false
0.1 + 0.2 -> 0.30000000000000004
为什么会出现这些错误?
当前回答
从Python 3.5开始,您可以使用math.isclose()函数来测试近似相等性:
>>> import math
>>> math.isclose(0.1 + 0.2, 0.3)
True
>>> 0.1 + 0.2 == 0.3
False
其他回答
二进制浮点数学是这样的。在大多数编程语言中,它基于IEEE 754标准。问题的关键在于,数字以这种格式表示为整数乘以2的幂;分母不是2的幂的有理数(如0.1,即1/10)无法精确表示。
对于标准binary64格式的0.1,表示形式可以完全写为
0.1000000000000000055511151231257827021181583404541015625(十进制),或0x1.999999999999ap-4,采用C99六进制浮点数表示法。
相比之下,有理数0.1(1/10)可以完全写成
0.1(十进制),或0x1.999999999999999…p-4,类似于C99十六进制浮点数,其中。。。表示9的无限序列。
程序中的常数0.2和0.3也将近似于其真实值。恰好最接近0.2的两倍大于有理数0.2,但最接近0.3的两倍小于有理数0.3。0.1和0.2的和最终大于有理数0.3,因此与代码中的常数不一致。
浮点运算问题的一个相当全面的处理是每个计算机科学家都应该知道的浮点运算。有关更容易理解的解释,请参阅floatingpoint-gui.de。
边注:所有位置(以N为基数)数字系统都有精度问题
普通的十进制(以10为基数)数字也有同样的问题,这就是为什么像1/3这样的数字最终会变成0.33333333。。。
您刚刚偶然发现了一个数字(3/10),它很容易用十进制表示,但不适合二进制。它也是双向的(在某种程度上):1/16在十进制中是一个丑陋的数字(0.0625),但在二进制中,它看起来和十进制中的第10000个一样整洁(0.0001)**-如果我们在日常生活中习惯使用基数为2的数字系统,你甚至会看着这个数字,本能地理解你可以通过将某个数字减半,一次又一次地减半来达到这个目的。
当然,这并不是浮点数在内存中的存储方式(它们使用了一种科学的表示法)。然而,它确实说明了一点,二进制浮点精度错误往往会出现,因为我们通常感兴趣的“真实世界”数字往往是十的幂,但这只是因为我们每天使用十进制数字系统。这也是为什么我们会说71%而不是“每7取5”(71%是一个近似值,因为5/7不能用任何小数精确表示)。
所以不:二进制浮点数并没有被破坏,它们只是碰巧和其他N进制一样不完美:)
边注:在编程中使用浮点
实际上,这种精度问题意味着在显示浮点数之前,需要使用舍入函数将浮点数舍入到您感兴趣的小数位数。
您还需要用允许一定公差的比较来替换相等测试,这意味着:
如果(x==y){…}则不执行
相反,如果(abs(x-y)<myToleranceValue){…},则执行此操作。
其中abs是绝对值。需要为您的特定应用程序选择myToleranceValue,这与您准备允许多少“摆动空间”以及您将要比较的最大值(由于精度损失问题)有很大关系。当心您选择的语言中的“epsilon”样式常量。这些值可以用作公差值,但它们的有效性取决于您使用的数字的大小,因为使用大数字的计算可能会超过epsilon阈值。
可以在数字计算机中实现的浮点数学必须使用实数的近似值及其运算。(标准版文件长达50多页,并有一个委员会处理其勘误表和进一步完善。)
这种近似是不同类型的近似的混合,每一种都可以被忽略或仔细考虑,因为其偏离精确性的特定方式。它还涉及到许多硬件和软件层面的明确例外情况,大多数人都会走过来假装没有注意到。
如果您需要无限精度(例如,使用数字π,而不是其许多较短的替代项之一),您应该编写或使用符号数学程序。
但是,如果您同意浮点数学有时在值和逻辑上是模糊的,错误可能会很快累积,并且您可以编写需求和测试来考虑这一点,那么您的代码可以经常通过FPU中的内容。
浮点舍入错误。由于缺少5的素因子,0.1在基-2中不能像在基-10中那样精确地表示。正如1/3以十进制表示需要无限位数,但以3为基数表示为“0.1”,0.1以2为基数表示,而以10为基数不表示。计算机没有无限的内存。
一些统计数据与这个著名的双精度问题有关。
当使用0.1(从0.1到100)的步长将所有值(a+b)相加时,精度误差的概率约为15%。请注意,该错误可能会导致稍大或稍小的值。以下是一些示例:
0.1 + 0.2 = 0.30000000000000004 (BIGGER)
0.1 + 0.7 = 0.7999999999999999 (SMALLER)
...
1.7 + 1.9 = 3.5999999999999996 (SMALLER)
1.7 + 2.2 = 3.9000000000000004 (BIGGER)
...
3.2 + 3.6 = 6.800000000000001 (BIGGER)
3.2 + 4.4 = 7.6000000000000005 (BIGGER)
当使用0.1(从100到0.1)的步长减去所有值(a-b,其中a>b)时,我们有大约34%的精度误差。以下是一些示例:
0.6 - 0.2 = 0.39999999999999997 (SMALLER)
0.5 - 0.4 = 0.09999999999999998 (SMALLER)
...
2.1 - 0.2 = 1.9000000000000001 (BIGGER)
2.0 - 1.9 = 0.10000000000000009 (BIGGER)
...
100 - 99.9 = 0.09999999999999432 (SMALLER)
100 - 99.8 = 0.20000000000000284 (BIGGER)
*15%和34%确实是巨大的,所以当精度非常重要时,请始终使用BigDecimal。使用2个十进制数字(步骤0.01),情况会进一步恶化(18%和36%)。
其实很简单。当你有一个基数为10的系统(像我们的系统)时,它只能表示使用基数素因子的分数。10的主要因子是2和5。因此,1/2、1/4、1/5、1/8和1/10都可以清晰地表达,因为分母都使用10的素因子。相比之下,1/3、1/6和1/7都是重复小数,因为它们的分母使用3或7的素因子。在二进制(或基数2)中,唯一的素因子是2。所以你只能清楚地表达分数,它只包含2作为素因子。在二进制中,1/2、1/4、1/8都可以清晰地表示为小数。而1/5或1/10将是重复小数。因此,0.1和0.2(1/10和1/5)虽然在以10为基数的系统中是干净的小数,但在计算机运行的以2为基数的体系中是重复的小数。当你对这些重复的小数进行数学运算时,当你将计算机的以2(二进制)为基数的数字转换为更易于人类阅读的以10为基础的数字时,你最终会留下剩余部分。
从…起https://0.30000000000000004.com/