我知道梯度下降和反向传播算法。我不明白的是:什么时候使用偏见是重要的,你如何使用它?

例如,在映射AND函数时,当我使用两个输入和一个输出时,它不会给出正确的权重。然而,当我使用三个输入(其中一个是偏差)时,它给出了正确的权重。


当前回答

我认为偏见几乎总是有益的。实际上,偏差值允许您将激活函数向左或向右移动,这可能对成功学习至关重要。

看一个简单的例子可能会有所帮助。考虑这个无偏差的1输入1输出网络:

网络的输出是通过将输入(x)乘以权重(w0)并将结果传递给某种激活函数(例如sigmoid函数)来计算的。

下面是这个网络计算的函数,对于不同的w0值:

改变权重w0本质上改变了s型曲线的“陡度”。这很有用,但是如果你想让x = 2时网络输出0呢?仅仅改变s型曲线的陡度是行不通的——你希望能够将整条曲线向右平移。

这正是偏差允许你做的。如果我们给这个网络加上一个偏差,像这样:

...然后网络的输出变成sig(w0*x + w1*1.0)。下面是不同w1值的网络输出:

如果w1的权值为-5,曲线就会向右平移,这样当x = 2时,网络的输出就会为0。

其他回答

单独修改神经元WEIGHTS只用于操纵传递函数的形状/曲率,而不是它的平衡/零交叉点。

引入偏置神经元允许您沿着输入轴水平(左/右)移动传递函数曲线,同时保持形状/曲率不变。 这将允许网络产生不同于默认值的任意输出,因此您可以自定义/移动输入到输出映射以满足您的特定需求。

请看这里的图表解释: http://www.heatonresearch.com/wiki/Bias

偏差决定了你的体重旋转的角度。

在二维图表中,权重和偏差可以帮助我们找到输出的决策边界。

假设我们需要构建一个AND函数,输入(p)-输出(t)对应该是

{p=[0,0], t=0},{p=[1,0], t=0},{p=[0,1], t=0},{p=[1,1], t=1}

现在我们需要找到一个决策边界,理想的边界应该是:

看到了吗?W垂直于边界。因此,我们说W决定了边界的方向。

但是,第一次找到正确的W是很困难的。大多数情况下,我们随机选择原始W值。因此,第一个边界可能是这样的:

现在边界平行于y轴。

我们要旋转边界。如何?

通过改变W。

因此,我们使用学习规则函数W'=W+P:

W'=W+P等价于W'=W+ bP,而b=1。

因此,通过改变b(bias)的值,就可以决定W’和W之间的夹角,这就是“ANN的学习规则”。

你也可以阅读Martin T. Hagan / Howard B. Demuth / Mark H. Beale的《神经网络设计》,第4章“感知器学习规则”。

我认为偏见几乎总是有益的。实际上,偏差值允许您将激活函数向左或向右移动,这可能对成功学习至关重要。

看一个简单的例子可能会有所帮助。考虑这个无偏差的1输入1输出网络:

网络的输出是通过将输入(x)乘以权重(w0)并将结果传递给某种激活函数(例如sigmoid函数)来计算的。

下面是这个网络计算的函数,对于不同的w0值:

改变权重w0本质上改变了s型曲线的“陡度”。这很有用,但是如果你想让x = 2时网络输出0呢?仅仅改变s型曲线的陡度是行不通的——你希望能够将整条曲线向右平移。

这正是偏差允许你做的。如果我们给这个网络加上一个偏差,像这样:

...然后网络的输出变成sig(w0*x + w1*1.0)。下面是不同w1值的网络输出:

如果w1的权值为-5,曲线就会向右平移,这样当x = 2时,网络的输出就会为0。

在我的硕士论文中的几个实验中(例如第59页),我发现偏差可能对第一层很重要,但特别是在最后的完全连接层,它似乎没有发挥很大的作用。

这可能高度依赖于网络架构/数据集。

如果您正在处理图像,实际上可能更喜欢完全不使用偏置。从理论上讲,这样你的网络将更独立于数据量,比如图片是暗的,还是亮的和生动的。网络将通过研究你的数据中的相对性来学习它的工作。很多现代神经网络都利用了这一点。

对于其他有偏差的数据可能是至关重要的。这取决于你要处理什么类型的数据。如果您的信息是大小不变的——如果输入[1,0,0.1]应该会导致与输入[100,0,10]相同的结果,那么没有偏差可能会更好。