昨天,我在洗衣服时把袜子配对,结果发现我这样做效率不高。我在做一个天真的搜索——挑选一只袜子,然后“反复”寻找那一双袜子。这需要平均在n/2*n/4=n2/8袜子上迭代。

作为一名计算机科学家,我在想我能做什么?排序(根据大小/颜色/…)当然是为了实现O(NlogN)解决方案。

哈希或其他不到位的解决方案是不可选择的,因为我无法复制我的袜子(如果可以的话,这可能很好)。

因此,问题基本上是:

给定一堆n双袜子,其中包含2n个元素(假设每只袜子正好有一对匹配的袜子),用对数的额外空间高效地将它们配对的最佳方式是什么?(如果需要的话,我相信我可以记住这些信息。)

我将感谢回答以下方面的问题:

大量袜子的一般理论解。袜子的实际数量没有那么多,我不相信我的配偶和我有超过30双。(而且很容易区分我的袜子和她的袜子;这也可以用吗?)它是否等同于元素清晰度问题?


当前回答

我在攻读计算机科学博士期间经常思考这个问题。我提出了多种解决方案,这取决于区分袜子的能力,从而尽可能快地找到正确的袜子。

假设看袜子和记住它们独特图案的成本可以忽略不计(ε)。那么最好的解决办法就是把所有的袜子都扔到桌子上。这包括以下步骤:

将所有袜子放在一张桌子上(1),并创建一个hashmap{pattern:position}(ε)当有剩余袜子时(n/2):随机挑选一只袜子(1)查找相应袜子的位置(ε)取回袜子(1)并存放

这确实是最快的可能性,并且以n+1=O(n)复杂度执行。但它假设你完全记得所有的模式。。。在实践中,情况并非如此,我个人的经验是,你有时在第一次尝试时找不到匹配的一对:

把所有袜子扔在桌子上(1)当有剩余袜子时(n/2):随机挑选一只袜子(1)当未配对时(1/P):找到具有相似图案的袜子拿袜子,比较两者(1)如果可以,存储配对

这现在取决于我们找到匹配对的能力。如果你的深色/灰色双鞋或白色运动袜经常有非常相似的图案,这一点尤其正确!让我们承认你有概率找到相应的袜子。在找到相应的袜子以形成一双袜子之前,平均需要1/P的尝试。总体复杂度为1+(n/2)*(1+1/P)=O(n)。

两者在袜子数量上都是线性的,并且是非常相似的解决方案。让我们稍微修改一下这个问题,承认你有多双类似的袜子,并且很容易在一次移动中存储多双袜子(1+ε)。对于K个不同的模式,您可以实现:

对于每只袜子(n):随机挑选一只袜子(1)将其放到其模式的集群中对于每个集群(K):取簇并储存袜子(1+ε)

总体复杂度变为n+K=O(n)。它仍然是线性的,但选择正确的算法现在可能很大程度上取决于P和K的值!但人们可能会再次反对,因为您可能很难找到(或创建)每只袜子的集群。

此外,你也可以在网站上查找最佳算法,并提出自己的解决方案,从而节省时间:)

其他回答

理论上的限制是O(n),因为你需要触摸每一只袜子(除非有些袜子已经配对)。

你可以用基数排序实现O(n)。你只需要为桶选择一些属性。

首先你可以选择(她的,我的)-把它们分成两堆,然后使用颜色(可以有任何颜色的顺序,例如按颜色名称的字母顺序)-按颜色将它们分成一堆(记住对同一堆中的所有袜子保持步骤1中的初始顺序),然后袜子的长度,然后是纹理,....

如果您可以选择有限数量的属性,但有足够多的属性可以唯一地标识每对属性,则应该使用O(k*n),如果我们可以考虑k是有限的,则使用O(n)。

我所做的就是拿起第一只袜子,把它放下(比如,放在洗衣碗的边缘)。然后我拿起另一只袜子,检查它是否与第一只袜子相同。如果是,我会把它们都去掉。如果不是,我把它放在第一只袜子旁边。然后我拿起第三只袜子,将其与前两只袜子进行比较(如果它们还在的话)。等

这种方法可以很容易地在阵列中实现,假设“移除”袜子是一个选项。实际上,你甚至不需要“脱掉”袜子。如果您不需要对袜子进行排序(见下文),那么您只需移动它们,就可以得到一个数组,该数组中所有袜子都成对排列。

假设袜子的唯一操作是比较相等,这个算法基本上仍然是n2算法,尽管我不知道平均情况(从未学会计算)。

当然,分类可以提高效率,尤其是在现实生活中,你可以很容易地将袜子“插入”在另外两个袜子之间。在计算中,树也可以做到这一点,但这是额外的空间。当然,我们又回到了NlogN(或者更多,如果有几只袜子按排序标准是相同的,但不是来自同一双)。

除此之外,我想不出什么,但这种方法在现实生活中似乎非常有效

对于p双袜子(n=2p只袜子),我实际上是这样做的:

从袜子堆里随便拿一只袜子。对于第一只袜子,或者如果之前选择的所有袜子都已配对,只需将袜子放入前面未配对袜子“阵列”的第一个“槽”中。如果有一个或多个选定的未配对袜子,请对照阵列中的所有未配对袜子检查当前袜子。在构建阵列时,可以将袜子分为普通类别或类型(白色/黑色、脚踝/圆领、运动型/连衣裙),并“向下搜索”以仅比较同类。如果你找到了一个可以接受的匹配,把两只袜子放在一起,然后把它们从阵列中去掉。如果没有,请将当前袜子放入阵列中第一个打开的插槽中。对每只袜子重复上述步骤。

这种方案的最坏情况是,每双袜子都不同,必须完全匹配,而且你挑选的第一双n/2袜子都不同。这是你的O(n2)场景,极不可能。如果袜子的独特类型的数量t小于袜子对的数量p=n/2,并且每种类型的袜子都足够相似(通常在穿着相关的术语中),使得该类型的任何袜子都可以与任何其他袜子配对,那么正如我上面所推断的,你必须与之进行比较的袜子的最大数量是t,之后你拉动的下一只袜子将与未配对的袜子之一相匹配。这种情况在普通袜子抽屉中比在最坏情况下更可能发生,并将最坏情况的复杂性降低到O(n*t),其中通常t<<n。

整理n双袜子的问题是O(n)。在你把它们扔进洗衣篮之前,你先把左边的衣服穿到右边的衣服上。取出时,你剪下线,把每一对线放进抽屉里——对n对线进行2次操作,所以O(n)。

现在,下一个问题很简单,你是自己洗衣服,还是妻子洗衣服。这可能是一个完全不同领域的问题。:)

两种思路,查找任何匹配项所需的速度,与查找所有匹配项所需要的速度相比,与存储相比。

对于第二种情况,我想指出一个GPU并行版本,它查询所有匹配的袜子。

如果您有多个要匹配的财产,则可以使用分组元组和更高级的zip迭代器以及推力的转换函数,尽管这里是一个基于GPU的简单查询:

//test.cu
#include <thrust/device_vector.h>
#include <thrust/sequence.h>
#include <thrust/copy.h>
#include <thrust/count.h>
#include <thrust/remove.h>
#include <thrust/random.h>
#include <iostream>
#include <iterator>
#include <string>

// Define some types for pseudo code readability
typedef thrust::device_vector<int> GpuList;
typedef GpuList::iterator          GpuListIterator;

template <typename T>
struct ColoredSockQuery : public thrust::unary_function<T,bool>
{
    ColoredSockQuery( int colorToSearch )
    { SockColor = colorToSearch; }

    int SockColor;

    __host__ __device__
    bool operator()(T x)
    {
        return x == SockColor;
    }
};


struct GenerateRandomSockColor
{
    float lowBounds, highBounds;

    __host__ __device__
    GenerateRandomSockColor(int _a= 0, int _b= 1) : lowBounds(_a), highBounds(_b) {};

    __host__ __device__
    int operator()(const unsigned int n) const
    {
        thrust::default_random_engine rng;
        thrust::uniform_real_distribution<float> dist(lowBounds, highBounds);
        rng.discard(n);
        return dist(rng);
    }
};

template <typename GpuListIterator>
void PrintSocks(const std::string& name, GpuListIterator first, GpuListIterator last)
{
    typedef typename std::iterator_traits<GpuListIterator>::value_type T;

    std::cout << name << ": ";
    thrust::copy(first, last, std::ostream_iterator<T>(std::cout, " "));
    std::cout << "\n";
}

int main()
{
    int numberOfSocks = 10000000;
    GpuList socks(numberOfSocks);
    thrust::transform(thrust::make_counting_iterator(0),
                      thrust::make_counting_iterator(numberOfSocks),
                      socks.begin(),
                      GenerateRandomSockColor(0, 200));

    clock_t start = clock();

    GpuList sortedSocks(socks.size());
    GpuListIterator lastSortedSock = thrust::copy_if(socks.begin(),
                                                     socks.end(),
                                                     sortedSocks.begin(),
                                                     ColoredSockQuery<int>(2));
    clock_t stop = clock();

    PrintSocks("Sorted Socks: ", sortedSocks.begin(), lastSortedSock);

    double elapsed = (double)(stop - start) * 1000.0 / CLOCKS_PER_SEC;
    std::cout << "Time elapsed in ms: " << elapsed << "\n";

    return 0;
}

    //nvcc -std=c++11 -o test test.cu

1000万只袜子的运行时间:9毫秒