大多数拥有计算机科学学位的人肯定知道大O代表什么。 它帮助我们衡量一个算法的可扩展性。
但我很好奇,你是如何计算或近似你的算法的复杂性的?
大多数拥有计算机科学学位的人肯定知道大O代表什么。 它帮助我们衡量一个算法的可扩展性。
但我很好奇,你是如何计算或近似你的算法的复杂性的?
当前回答
首先,公认的答案是试图解释漂亮的花哨的东西, 但我认为,故意让Big-Oh复杂化并不是解决办法, 这是程序员(或者至少是像我这样的人)寻找的。
Big Oh(简而言之)
function f(text) {
var n = text.length;
for (var i = 0; i < n; i++) {
f(text.slice(0, n-1))
}
// ... other JS logic here, which we can ignore ...
}
上面的大写哦是f(n) = O(n!)其中n表示输入集中的条目数, f表示每一项所做的操作。
Big-Oh符号是算法复杂度的渐近上界。 在编程中:假设的最坏情况所花费的时间, 或假设逻辑的最大重复计数,为输入的大小。
计算
记住(从上面的意思);我们只需要受N(输入大小)影响的最坏情况时间和/或最大重复次数, 然后再看一下(公认答案的)例子:
for (i = 0; i < 2*n; i += 2) { // line 123
for (j=n; j > i; j--) { // line 124
foo(); // line 125
}
}
Begin with this search-pattern: Find first line that N caused repeat behavior, Or caused increase of logic executed, But constant or not, ignore anything before that line. Seems line hundred-twenty-three is what we are searching ;-) On first sight, line seems to have 2*n max-looping. But looking again, we see i += 2 (and that half is skipped). So, max repeat is simply n, write it down, like f(n) = O( n but don't close parenthesis yet. Repeat search till method's end, and find next line matching our search-pattern, here that's line 124 Which is tricky, because strange condition, and reverse looping. But after remembering that we just need to consider maximum repeat count (or worst-case time taken). It's as easy as saying "Reverse-Loop j starts with j=n, am I right? yes, n seems to be maximum possible repeat count", so: Add n to previous write down's end, but like "( n " instead of "+ n" (as this is inside previous loop), and close parenthesis only if we find something outside of previous loop.
搜索完成了!为什么?因为第125行(或之后的任何行)与我们的搜索模式不匹配。 现在我们可以关闭任何圆括号(在我们的记录中左开),结果如下:
f(n) = O( n( n ) )
试着进一步缩短“n(n)”部分,比如:
N (N) = N * N = n2 最后,用Big Oh符号来包装它,就像O(n2)或O(n²)一样,没有格式。
其他回答
熟悉我使用的算法/数据结构和/或快速分析迭代嵌套。难点在于,当您调用一个库函数时,可能会多次调用—您常常不确定是否在不必要的时候调用了函数,或者它们正在使用什么实现。也许库函数应该有一个复杂度/效率度量,无论是大O还是其他度量,都可以在文档或智能感知中得到。
除了使用主方法(或其专门化之一)之外,我还通过实验测试了我的算法。这不能证明达到了任何特定的复杂度等级,但它可以保证数学分析是适当的。为了保证这一点,我将代码覆盖工具与我的实验结合起来使用,以确保我使用了所有的案例。
作为一个非常简单的例子,假设你想要对. net框架的列表排序的速度进行完整性检查。你可以像下面这样写,然后在Excel中分析结果,以确保它们不超过n*log(n)曲线。
在这个例子中,我测量了比较的数量,但也要谨慎地检查每个样本量所需的实际时间。然而,您必须更加小心,因为您只是在度量算法,而不包括来自测试基础结构的工件。
int nCmp = 0;
System.Random rnd = new System.Random();
// measure the time required to sort a list of n integers
void DoTest(int n)
{
List<int> lst = new List<int>(n);
for( int i=0; i<n; i++ )
lst[i] = rnd.Next(0,1000);
// as we sort, keep track of the number of comparisons performed!
nCmp = 0;
lst.Sort( delegate( int a, int b ) { nCmp++; return (a<b)?-1:((a>b)?1:0)); }
System.Console.Writeline( "{0},{1}", n, nCmp );
}
// Perform measurement for a variety of sample sizes.
// It would be prudent to check multiple random samples of each size, but this is OK for a quick sanity check
for( int n = 0; n<1000; n++ )
DoTest(n);
让我们从头说起。
首先,接受这样一个原则:对数据的某些简单操作可以在O(1)时间内完成,即在与输入大小无关的时间内完成。C语言中的这些基本操作由
算术运算(例如+或%)。 逻辑操作(如&&)。 比较操作(例如,<=)。 结构访问操作(例如A[i]这样的数组索引,或指针后跟 使用->操作符降低)。 简单的赋值,例如将值复制到变量中。 调用库函数(例如,scanf, printf)。
要证明这一原理,需要对典型计算机的机器指令(基本步骤)进行详细研究。所描述的每一个操作都可以用少量的机器指令来完成;通常只需要一个或两个指令。 因此,C语言中的几种语句可以在O(1)时间内执行,也就是说,在与输入无关的某个常数时间内执行。这些简单的包括
表达式中不涉及函数调用的赋值语句。 读语句。 编写不需要调用函数来计算参数的语句。 跳转语句有break、continue、goto和return表达式 表达式不包含函数调用。
在C语言中,许多for循环是通过将索引变量初始化为某个值和来形成的 在每次循环中对该变量加1。for循环结束于 指数达到某个极限。例如,For循环
for (i = 0; i < n-1; i++)
{
small = i;
for (j = i+1; j < n; j++)
if (A[j] < A[small])
small = j;
temp = A[small];
A[small] = A[i];
A[i] = temp;
}
使用索引变量i。它在循环和迭代中每一次都使i增加1 当I达到n−1时停止。
然而,目前,我们只关注for循环的简单形式,其中最终值和初始值之间的差值除以索引变量的增量,告诉我们循环了多少次。这个计数是准确的,除非有办法通过跳转语句退出循环;在任何情况下,它都是迭代次数的上限。
例如,For循环迭代((n−1)−0)/1 = n−1次, 由于0是i的初始值,n−1是i达到的最大值(即当i 到达n−1时,循环停止,当I = n−1)时不发生迭代,并添加1 在循环的每一次迭代中。
In the simplest case, where the time spent in the loop body is the same for each iteration, we can multiply the big-oh upper bound for the body by the number of times around the loop. Strictly speaking, we must then add O(1) time to initialize the loop index and O(1) time for the first comparison of the loop index with the limit, because we test one more time than we go around the loop. However, unless it is possible to execute the loop zero times, the time to initialize the loop and test the limit once is a low-order term that can be dropped by the summation rule.
现在想想这个例子:
(1) for (j = 0; j < n; j++)
(2) A[i][j] = 0;
我们知道直线(1)花费O(1)时间。显然,我们循环了n次 我们可以用在线上得到的上限减去下限来确定 (1)再加1。由于主体,行(2),花费O(1)时间,我们可以忽略 增加j的时间和比较j与n的时间,两者都是O(1)。 因此,行(1)和行(2)的运行时间是n和O(1)的乘积,即O(n)。
类似地,我们可以限制由行组成的外部循环的运行时间 (2)到(4),即
(2) for (i = 0; i < n; i++)
(3) for (j = 0; j < n; j++)
(4) A[i][j] = 0;
我们已经建立了行(3)和行(4)的循环花费O(n)时间。 因此,我们可以忽略O(1)时间来增加i,并测试i是否< n in 每次迭代,得出每次外循环迭代花费O(n)时间。
外部循环的初始化i = 0和条件的(n + 1)st检验 i < n同样需要O(1)次,可以忽略。最后,我们观察到我们走了 绕外循环n圈,每次迭代花费O(n)时间,得到总数 O(n²)运行时间。
一个更实际的例子。
基本上90%的情况下都是分析循环。你有单、双、三重嵌套循环吗?你有O(n) O(n²)O(n³)的运行时间。
很少(除非你正在编写一个具有广泛基库的平台(例如,.NET BCL或c++的STL),你会遇到比查看循环(for语句,while, goto等…)更困难的事情。
小提示:大O符号是用来表示渐近复杂度的(也就是说,当问题的大小增长到无穷大时),它隐藏了一个常数。
这意味着在O(n)和O(n2)的算法之间,最快的并不总是第一个算法(尽管总是存在一个值n,这样对于大小为>n的问题,第一个算法是最快的)。
注意,隐藏常数很大程度上取决于实现!
此外,在某些情况下,运行时并不是输入大小为n的确定函数。以快速排序为例:对n个元素的数组进行排序所需的时间不是一个常数,而是取决于数组的初始配置。
有不同的时间复杂度:
最坏的情况(通常是最简单的,但并不总是很有意义) 一般情况下(通常很难弄清楚…) ...
一个很好的介绍是R. Sedgewick和P. Flajolet的《算法分析导论》。
正如你所说,过早的优化是万恶之源,(如果可能的话)在优化代码时真的应该总是使用分析。它甚至可以帮助您确定算法的复杂性。