大多数拥有计算机科学学位的人肯定知道大O代表什么。 它帮助我们衡量一个算法的可扩展性。

但我很好奇,你是如何计算或近似你的算法的复杂性的?


当前回答

我想从另一个角度来解释Big-O。

Big-O只是用来比较程序的复杂性,也就是当输入增加时它们的增长速度有多快,而不是花在执行操作上的确切时间。

恕我直言,在大o公式中,你最好不要使用更复杂的方程(你可以坚持使用下图中的方程)。然而,你仍然可以使用其他更精确的公式(如3^n, n^3,…),但有时会误导!所以还是尽量简单为好。

我想再次强调,这里我们不想得到一个精确的算法公式。我们只想展示当输入增加时它是如何增长的并在这方面与其他算法进行比较。否则,您最好使用不同的方法,如基准测试。

其他回答

我从信息的角度来考虑。任何问题都包括学习一定数量的比特。

你的基本工具是决策点及其熵的概念。一个决策点的熵是它会给你的平均信息。例如,如果一个程序包含一个有两个分支的决策点,它的熵是每个分支的概率乘以该分支的逆概率的log2的和。这就是你从执行决策中学到的东西。

例如,一个if语句有两个分支,都是等可能的,其熵为1/2 * log(2/1) + 1/2 * log(2/1) = 1/2 * 1 + 1/2 * 1 = 1。所以它的熵是1比特。

假设您正在搜索一个包含N个条目的表,例如N=1024。这是一个10位问题,因为log(1024) = 10位。所以如果你可以用if语句搜索结果的可能性相等,它应该需要10个决定。

这就是二分搜索的结果。

假设你在做线性搜索。您查看第一个元素并询问它是否是您想要的元素。是的概率是1/1024,不是的概率是1023/1024。该决策的熵为1/1024*log(1024/1) + 1023/1024 *log(1024/1023) = 1/1024* 10 + 1023/1024 * about 0 =约0.01 bit。你学得太少了!第二个决定也好不到哪里去。这就是为什么线性搜索这么慢。事实上,你需要学习的比特数是指数级的。

假设你在做索引。假设表被预先排序到许多箱子中,并且您使用键中的所有位中的一些位直接索引到表项。如果有1024个箱子,熵为1/1024 * log(1024) + 1/1024 * log(1024) +…对于所有1024个可能的结果。这是1/1024 * 10乘以1024个结果,或者对一个索引操作来说是10比特的熵。这就是为什么索引搜索是快速的。

现在想想排序。你有N个项目,你有一个列表。对于每个项目,您必须搜索项目在列表中的位置,然后将其添加到列表中。排序大约需要N倍于底层搜索的步数。

基于二元决策的排序结果都是等概率的都需要O(N log N)步。基于索引搜索的O(N)排序算法是可行的。

我发现几乎所有的算法性能问题都可以用这种方式来看待。

将算法分解成你知道的大O符号,并通过大O运算符组合。这是我知道的唯一办法。

欲了解更多信息,请查看有关该主题的维基百科页面。

我想从另一个角度来解释Big-O。

Big-O只是用来比较程序的复杂性,也就是当输入增加时它们的增长速度有多快,而不是花在执行操作上的确切时间。

恕我直言,在大o公式中,你最好不要使用更复杂的方程(你可以坚持使用下图中的方程)。然而,你仍然可以使用其他更精确的公式(如3^n, n^3,…),但有时会误导!所以还是尽量简单为好。

我想再次强调,这里我们不想得到一个精确的算法公式。我们只想展示当输入增加时它是如何增长的并在这方面与其他算法进行比较。否则,您最好使用不同的方法,如基准测试。

我不知道如何通过编程来解决这个问题,但人们做的第一件事是我们对算法的特定模式进行抽样,比如4n²+ 2n + 1我们有两个规则:

如果我们有一个项的和,增长率最大的项被保留,其他项被省略。 如果我们有几个因数的乘积,常数因数就省略了。

如果我们化简f(x),其中f(x)是所做操作数量的公式,(上文解释的4n²+ 2n + 1),我们得到大O值[在这种情况下是O(n²)]。但这必须考虑到程序中的拉格朗日插值,这可能很难实现。如果真正的大O值是O(2^n)我们可能有O(x^n)这样的东西,那么这个算法可能是不可编程的。但如果有人证明我错了,给我代码. . . .

经常被忽视的是算法的预期行为。它不会改变你的算法的大o,但它确实与“过早优化.. ..”的声明有关

你的算法的预期行为是——非常简单——你期望你的算法在你最有可能看到的数据上工作的速度有多快。

例如,如果你在一个列表中搜索一个值,它是O(n),但如果你知道你看到的大多数列表都有你的值在前面,你的算法的典型行为会更快。

为了真正确定它,你需要能够描述你的“输入空间”的概率分布(如果你需要对一个列表排序,这个列表已经被排序的频率是多少?有多少次是完全相反的?多长时间进行一次排序?)这并不总是可行的,但有时你知道。