这可能是一个简单的问题,但我不知道该怎么做。假设有两个变量。
a = 2
b = 3
我想从这个构建一个数据框架:
df2 = pd.DataFrame({'A':a,'B':b})
这会产生一个错误:
ValueError:如果使用所有标量值,则必须传递一个索引
我也试过这个:
df2 = (pd.DataFrame({'a':a,'b':b})).reset_index()
这将给出相同的错误消息。
这可能是一个简单的问题,但我不知道该怎么做。假设有两个变量。
a = 2
b = 3
我想从这个构建一个数据框架:
df2 = pd.DataFrame({'A':a,'B':b})
这会产生一个错误:
ValueError:如果使用所有标量值,则必须传递一个索引
我也试过这个:
df2 = (pd.DataFrame({'a':a,'b':b})).reset_index()
这将给出相同的错误消息。
当前回答
将“a”和“b”值更改为列表,如下所示:
a = [2]
b = [3]
然后执行如下代码:
df2 = pd.DataFrame({'A':a,'B':b})
df2
你会得到:
A B
0 2 3
其他回答
这是因为DataFrame有两个直观的维度——列和行。
您只是使用字典键指定列。
如果您只想指定一维数据,请使用Series!
也许Series会提供你需要的所有函数:
pd.Series({'A':a,'B':b})
DataFrame可以被认为是一个系列的集合,因此你可以:
将多个Series连接到一个数据帧中(如此处所述) 向现有数据帧中添加一个Series变量(示例如下)
你可以试着把你的字典包装成一个列表:
my_dict = {'A':1,'B':2}
pd.DataFrame([my_dict])
A B
0 1 2
只要把字典放在一个列表上:
a = 2
b = 3
df2 = pd.DataFrame([{'A':a,'B':b}])
将字典转换为数据帧
col_dict_df = pd.Series(col_dict).to_frame('new_col').reset_index()
为列指定新名称
col_dict_df.columns = ['col1', 'col2']