这可能是一个简单的问题,但我不知道该怎么做。假设有两个变量。

a = 2
b = 3

我想从这个构建一个数据框架:

df2 = pd.DataFrame({'A':a,'B':b})

这会产生一个错误:

ValueError:如果使用所有标量值,则必须传递一个索引

我也试过这个:

df2 = (pd.DataFrame({'a':a,'b':b})).reset_index()

这将给出相同的错误消息。


当前回答

将“a”和“b”值更改为列表,如下所示:

a = [2]
b = [3]

然后执行如下代码:

df2 = pd.DataFrame({'A':a,'B':b})
df2

你会得到:

    A   B
0   2   3

其他回答

最简单的选项ls:

dict  = {'A':a,'B':b}
df = pd.DataFrame(dict, index = np.arange(1) )

首先你需要创造一个熊猫系列。第二步是将pandas系列转换为pandas数据框架。

import pandas as pd
data = {'a': 1, 'b': 2}
pd.Series(data).to_frame()

您甚至可以提供列名。

pd.Series(data).to_frame('ColumnName')

只要把字典放在一个列表上:

a = 2
b = 3
df2 = pd.DataFrame([{'A':a,'B':b}])

也许Series会提供你需要的所有函数:

pd.Series({'A':a,'B':b})

DataFrame可以被认为是一个系列的集合,因此你可以:

将多个Series连接到一个数据帧中(如此处所述) 向现有数据帧中添加一个Series变量(示例如下)

我对numpy数组也有同样的问题,解决方案是将它们压平:

data = {
    'b': array1.flatten(),
    'a': array2.flatten(),
}

df = pd.DataFrame(data)