这可能是一个简单的问题,但我不知道该怎么做。假设有两个变量。
a = 2
b = 3
我想从这个构建一个数据框架:
df2 = pd.DataFrame({'A':a,'B':b})
这会产生一个错误:
ValueError:如果使用所有标量值,则必须传递一个索引
我也试过这个:
df2 = (pd.DataFrame({'a':a,'b':b})).reset_index()
这将给出相同的错误消息。
这可能是一个简单的问题,但我不知道该怎么做。假设有两个变量。
a = 2
b = 3
我想从这个构建一个数据框架:
df2 = pd.DataFrame({'A':a,'B':b})
这会产生一个错误:
ValueError:如果使用所有标量值,则必须传递一个索引
我也试过这个:
df2 = (pd.DataFrame({'a':a,'b':b})).reset_index()
这将给出相同的错误消息。
当前回答
将“a”和“b”值更改为列表,如下所示:
a = [2]
b = [3]
然后执行如下代码:
df2 = pd.DataFrame({'A':a,'B':b})
df2
你会得到:
A B
0 2 3
其他回答
你也可以使用pd.DataFrame.from_records,这在你已经有字典的情况下更方便:
df = pd.DataFrame.from_records([{ 'A':a,'B':b }])
你也可以设置索引,如果你想,通过:
df = pd.DataFrame.from_records([{ 'A':a,'B':b }], index='A')
如果你想转换一个标量字典,你必须包含一个索引:
import pandas as pd
alphabets = {'A': 'a', 'B': 'b'}
index = [0]
alphabets_df = pd.DataFrame(alphabets, index=index)
print(alphabets_df)
虽然索引对于列表字典不需要,但同样的思想可以扩展到列表字典:
planets = {'planet': ['earth', 'mars', 'jupiter'], 'length_of_day': ['1', '1.03', '0.414']}
index = [0, 1, 2]
planets_df = pd.DataFrame(planets, index=index)
print(planets_df)
当然,对于列表字典,你可以在没有索引的情况下构建数据框架:
planets_df = pd.DataFrame(planets)
print(planets_df)
你可以试试:
df2 = pd.DataFrame.from_dict({'a':a,'b':b}, orient = 'index')
来自'orient'参数的文档:如果传递的dict的键应该是结果DataFrame的列,则传递' columns '(默认)。否则,如果键应该是行,则传递' index '。
另一个选项是使用Dictionary Comprehension动态地将标量转换为列表:
df = pd.DataFrame(data={k: [v] for k, v in mydict.items()})
表达式{…}创建一个新的字典,其值是一个包含1个元素的列表。例如:
In [20]: mydict
Out[20]: {'a': 1, 'b': 2}
In [21]: mydict2 = { k: [v] for k, v in mydict.items()}
In [22]: mydict2
Out[22]: {'a': [1], 'b': [2]}
最简单的选项ls:
dict = {'A':a,'B':b}
df = pd.DataFrame(dict, index = np.arange(1) )