这可能是一个简单的问题,但我不知道该怎么做。假设有两个变量。
a = 2
b = 3
我想从这个构建一个数据框架:
df2 = pd.DataFrame({'A':a,'B':b})
这会产生一个错误:
ValueError:如果使用所有标量值,则必须传递一个索引
我也试过这个:
df2 = (pd.DataFrame({'a':a,'b':b})).reset_index()
这将给出相同的错误消息。
这可能是一个简单的问题,但我不知道该怎么做。假设有两个变量。
a = 2
b = 3
我想从这个构建一个数据框架:
df2 = pd.DataFrame({'A':a,'B':b})
这会产生一个错误:
ValueError:如果使用所有标量值,则必须传递一个索引
我也试过这个:
df2 = (pd.DataFrame({'a':a,'b':b})).reset_index()
这将给出相同的错误消息。
当前回答
只要把字典放在一个列表上:
a = 2
b = 3
df2 = pd.DataFrame([{'A':a,'B':b}])
其他回答
如果你有一个字典,你可以用下面这行代码把它转换成pandas数据帧:
pd.DataFrame({"key": d.keys(), "value": d.values()})
你可以试试:
df2 = pd.DataFrame.from_dict({'a':a,'b':b}, orient = 'index')
来自'orient'参数的文档:如果传递的dict的键应该是结果DataFrame的列,则传递' columns '(默认)。否则,如果键应该是行,则传递' index '。
只要把字典放在一个列表上:
a = 2
b = 3
df2 = pd.DataFrame([{'A':a,'B':b}])
输入不一定是一个记录列表,也可以是一个字典:
pd.DataFrame.from_records({'a':1,'b':2}, index=[0])
a b
0 1 2
这似乎相当于:
pd.DataFrame({'a':1,'b':2}, index=[0])
a b
0 1 2
最简单的选项ls:
dict = {'A':a,'B':b}
df = pd.DataFrame(dict, index = np.arange(1) )