这可能是一个简单的问题,但我不知道该怎么做。假设有两个变量。

a = 2
b = 3

我想从这个构建一个数据框架:

df2 = pd.DataFrame({'A':a,'B':b})

这会产生一个错误:

ValueError:如果使用所有标量值,则必须传递一个索引

我也试过这个:

df2 = (pd.DataFrame({'a':a,'b':b})).reset_index()

这将给出相同的错误消息。


当前回答

将字典转换为数据帧

col_dict_df = pd.Series(col_dict).to_frame('new_col').reset_index()

为列指定新名称

col_dict_df.columns = ['col1', 'col2']

其他回答

你需要提供可迭代对象作为Pandas DataFrame列的值:

df2 = pd.DataFrame({'A':[a],'B':[b]})

你也可以使用pd.DataFrame.from_records,这在你已经有字典的情况下更方便:

df = pd.DataFrame.from_records([{ 'A':a,'B':b }])

你也可以设置索引,如果你想,通过:

df = pd.DataFrame.from_records([{ 'A':a,'B':b }], index='A')

将“a”和“b”值更改为列表,如下所示:

a = [2]
b = [3]

然后执行如下代码:

df2 = pd.DataFrame({'A':a,'B':b})
df2

你会得到:

    A   B
0   2   3

也许Series会提供你需要的所有函数:

pd.Series({'A':a,'B':b})

DataFrame可以被认为是一个系列的集合,因此你可以:

将多个Series连接到一个数据帧中(如此处所述) 向现有数据帧中添加一个Series变量(示例如下)

你可以试试这个: df2 = pd.DataFrame.from_dict ({a: a、b: b},东方=“指数”)