这可能是一个简单的问题,但我不知道该怎么做。假设有两个变量。
a = 2
b = 3
我想从这个构建一个数据框架:
df2 = pd.DataFrame({'A':a,'B':b})
这会产生一个错误:
ValueError:如果使用所有标量值,则必须传递一个索引
我也试过这个:
df2 = (pd.DataFrame({'a':a,'b':b})).reset_index()
这将给出相同的错误消息。
这可能是一个简单的问题,但我不知道该怎么做。假设有两个变量。
a = 2
b = 3
我想从这个构建一个数据框架:
df2 = pd.DataFrame({'A':a,'B':b})
这会产生一个错误:
ValueError:如果使用所有标量值,则必须传递一个索引
我也试过这个:
df2 = (pd.DataFrame({'a':a,'b':b})).reset_index()
这将给出相同的错误消息。
当前回答
import pandas as pd
a=2
b=3
dict = {'A': a, 'B': b}
pd.DataFrame(pd.Series(dict)).T
# *T :transforms the dataframe*
Result:
A B
0 2 3
其他回答
首先你需要创造一个熊猫系列。第二步是将pandas系列转换为pandas数据框架。
import pandas as pd
data = {'a': 1, 'b': 2}
pd.Series(data).to_frame()
您甚至可以提供列名。
pd.Series(data).to_frame('ColumnName')
错误消息表示,如果您传递标量值,则必须传递一个索引。所以你可以不为列使用标量值——例如使用一个列表:
>>> df = pd.DataFrame({'A': [a], 'B': [b]})
>>> df
A B
0 2 3
或者使用标量值并传递一个索引:
>>> df = pd.DataFrame({'A': a, 'B': b}, index=[0])
>>> df
A B
0 2 3
你需要提供可迭代对象作为Pandas DataFrame列的值:
df2 = pd.DataFrame({'A':[a],'B':[b]})
将字典转换为数据帧
col_dict_df = pd.Series(col_dict).to_frame('new_col').reset_index()
为列指定新名称
col_dict_df.columns = ['col1', 'col2']
如果你有一个字典,你可以用下面这行代码把它转换成pandas数据帧:
pd.DataFrame({"key": d.keys(), "value": d.values()})