这可能是一个简单的问题,但我不知道该怎么做。假设有两个变量。

a = 2
b = 3

我想从这个构建一个数据框架:

df2 = pd.DataFrame({'A':a,'B':b})

这会产生一个错误:

ValueError:如果使用所有标量值,则必须传递一个索引

我也试过这个:

df2 = (pd.DataFrame({'a':a,'b':b})).reset_index()

这将给出相同的错误消息。


当前回答

这是因为DataFrame有两个直观的维度——列和行。

您只是使用字典键指定列。

如果您只想指定一维数据,请使用Series!

其他回答

也许Series会提供你需要的所有函数:

pd.Series({'A':a,'B':b})

DataFrame可以被认为是一个系列的集合,因此你可以:

将多个Series连接到一个数据帧中(如此处所述) 向现有数据帧中添加一个Series变量(示例如下)

如果你有一个字典,你可以用下面这行代码把它转换成pandas数据帧:

pd.DataFrame({"key": d.keys(), "value": d.values()})

错误消息表示,如果您传递标量值,则必须传递一个索引。所以你可以不为列使用标量值——例如使用一个列表:

>>> df = pd.DataFrame({'A': [a], 'B': [b]})
>>> df
   A  B
0  2  3

或者使用标量值并传递一个索引:

>>> df = pd.DataFrame({'A': a, 'B': b}, index=[0])
>>> df
   A  B
0  2  3

只要把字典放在一个列表上:

a = 2
b = 3
df2 = pd.DataFrame([{'A':a,'B':b}])

输入不一定是一个记录列表,也可以是一个字典:

pd.DataFrame.from_records({'a':1,'b':2}, index=[0])
   a  b
0  1  2

这似乎相当于:

pd.DataFrame({'a':1,'b':2}, index=[0])
   a  b
0  1  2