遗传算法(GA)和遗传规划(GP)是一个有趣的研究领域。
我想知道你使用GA/GP解决的具体问题,以及如果你没有自己的库/框架,你使用了什么库/框架。
问题:
你用GA/GP解决过什么问题? 你使用了哪些库/框架?
我在寻找第一手的经验,所以请不要回答,除非你有。
遗传算法(GA)和遗传规划(GP)是一个有趣的研究领域。
我想知道你使用GA/GP解决的具体问题,以及如果你没有自己的库/框架,你使用了什么库/框架。
问题:
你用GA/GP解决过什么问题? 你使用了哪些库/框架?
我在寻找第一手的经验,所以请不要回答,除非你有。
当前回答
在我的本科论文中,我使用遗传编程来开发用于空中搜索和救援的合作搜索策略。我使用一个名为NetLogo(基于StarLogo)的开源代理建模平台作为世界模型。NetLogo是用java写的,因此提供了java api -所以GP框架需要基于java -我使用的一个叫做JGAP,还有另一个开源GP框架在java中,我知道叫做ECJ。
模拟运行起来非常慢(我认为这是由于NetLogo模型),所以我的功能/终端集非常有限,限制了搜索空间。尽管如此,我还是想出了一些很好的解决办法。如果你有这种冲动,你可以在我的论文http://www.cse.unsw.edu.au/~ekjo014/z3157867_Thesis.pdf的第三章读到
其他回答
当你打算粉刷你的房子时,通常很难得到一个确切的颜色组合。通常,你脑海中有一些颜色,但它不是其中一种颜色,供应商向你展示。
昨天,我的GA研究员教授提到了一个发生在德国的真实故事(对不起,我没有更多的参考资料,是的,如果有人要求我可以找到它)。这个家伙(让我们称他为配色员)曾经挨家挨户地帮助人们找到确切的颜色代码(RGB),这将是客户心目中的衣柜。下面是他的做法:
The color guy used to carry with him a software program which used GA. He used to start with 4 different colors- each coded as a coded Chromosome (whose decoded value would be a RGB value). The consumer picks 1 of the 4 colors (Which is the closest to which he/she has in mind). The program would then assign the maximum fitness to that individual and move onto the next generation using mutation/crossover. The above steps would be repeated till the consumer had found the exact color and then color guy used to tell him the RGB combination!
通过将最大适应度分配给接近消费者想法的颜色,配色员的程序增加了收敛到消费者想法的颜色的机会。我发现它很有趣!
现在我已经得到了一个-1,如果你计划更多的-1,请说明这样做的原因!
我做了一个完整的GA框架,命名为“GALAB”,解决了很多问题:
定位GSM ANTs (BTS)以减少重叠和空白位置。 资源约束项目调度。 进化图景的创造。(Evopic) 旅行推销员问题。 n -皇后和n -颜色问题。 骑士之旅和背包问题。 魔方和数独谜题。 字符串压缩,基于超字符串问题。 二维包装问题。 微型人工生命APP。 鲁比克难题。
在学校的一次研讨会上,我们开发了一个基于音乐模式生成音乐的应用程序。该程序是在Java中构建的,输出是一个midi文件与歌曲。我们使用不同的GA方法来生成音乐。我认为这个程序可以用来探索新的组合。
在读完《盲人钟表匠》之后,我对道金斯所说的帕斯卡程序产生了兴趣,他开发了一个可以随着时间进化的生物模型。我对使用Swarm编写自己的程序很感兴趣。我没有画出他画的那些奇特的生物图形,但我的“染色体”控制着影响生物体生存能力的特征。他们生活在一个简单的世界里,可以与彼此和环境决一死战。
生物的生存或死亡部分取决于偶然性,但也取决于它们如何有效地适应当地环境,如何有效地消耗营养物质以及如何成功地繁殖。这很有趣,但也向我妻子证明了我是一个极客。
我几周前做了这个有趣的小玩意。它生成有趣的互联网图像使用GA。有点傻,但很好笑。
http://www.twitterandom.info/GAFunny/
对此有一些见解。它是一些mysql表。一个用于图像列表及其评分(即适合度),另一个用于子图像及其在页面上的位置。
子图像可以有几个细节,但不是全部实现:+大小,倾斜,旋转,+位置,+image_url。
当人们投票决定这张照片有多有趣时,它或多或少会流传到下一代。如果它存活下来,它会产生5-10个带有轻微突变的后代。目前还没有交叉。