遗传算法(GA)和遗传规划(GP)是一个有趣的研究领域。
我想知道你使用GA/GP解决的具体问题,以及如果你没有自己的库/框架,你使用了什么库/框架。
问题:
你用GA/GP解决过什么问题? 你使用了哪些库/框架?
我在寻找第一手的经验,所以请不要回答,除非你有。
遗传算法(GA)和遗传规划(GP)是一个有趣的研究领域。
我想知道你使用GA/GP解决的具体问题,以及如果你没有自己的库/框架,你使用了什么库/框架。
问题:
你用GA/GP解决过什么问题? 你使用了哪些库/框架?
我在寻找第一手的经验,所以请不要回答,除非你有。
当前回答
我构建了一个简单的GA,用于在音乐播放时从频谱中提取有用的模式。输出用于驱动winamp插件中的图形效果。
输入:一些FFT帧(想象一个二维浮点数组) 输出:单个浮点值(输入的加权和),阈值为0.0或1.0 基因:输入权重 适应度函数:占空比、脉宽、BPM在合理范围内的组合。
我将一些ga调整到频谱的不同部分以及不同的BPM限制,所以它们不会趋向于收敛到相同的模式。来自每个种群的前4个的输出被发送到渲染引擎。
一个有趣的副作用是,整个人群的平均健康状况是音乐变化的一个很好的指标,尽管通常需要4-5秒才能发现。
其他回答
In 2007-9 I developed some software for reading datamatrix patterns. Often these patterns were difficult to read, being indented into scratched surfaces with all kinds of reflectance properties, fuzzy chemically etched markings and so on. I used a GA to fine tune various parameters of the vision algorithms to give the best results on a database of 300 images having known properties. Parameters were things like downsampling resolution, RANSAC parameters, amount of erosion and dilation, low pass filtering radius, and a few others. Running the optimisation over several days this produced results which were about 20% better than naive values on a test set of images unseen during the optimisation phase.
这个系统完全是从零开始编写的,我没有使用任何其他库。我并不反对使用这些东西,只要它们能提供可靠的结果,但是您必须注意许可兼容性和代码可移植性问题。
足球引爆。我建立了一个GA系统来预测每周澳式足球比赛的结果。
A few years ago I got bored of the standard work football pool, everybody was just going online and taking the picks from some pundit in the press. So, I figured it couldn't be too hard to beat a bunch of broadcast journalism majors, right? My first thought was to take the results from Massey Ratings and then reveal at the end of the season my strategy after winning fame and glory. However, for reasons I've never discovered Massey does not track AFL. The cynic in me believes it is because the outcome of each AFL game has basically become random chance, but my complaints of recent rule changes belong in a different forum.
该系统基本上考虑了进攻强度、防守强度、主场优势、每周的改进(或缺乏)以及这些方面的变化速度。这为每支球队在整个赛季中建立了一组多项式方程。可以计算给定日期的每场比赛的获胜者和分数。我们的目标是找到最接近过去所有游戏结果的系数集,并使用该集合来预测接下来几周的游戏。
在实践中,该系统将找到能够准确预测过去90%以上游戏结果的解决方案。然后,它会成功地为即将到来的一周(即不在训练集中的那一周)挑选大约60-80%的比赛。
结果是:略高于中游水平。没有巨额奖金也没有能打败维加斯的系统。不过很有趣。
我从零开始构建一切,没有使用任何框架。
几周前,我提出了一个关于SO的解决方案,使用遗传算法来解决图布局的问题。这是一个约束优化问题的例子。
同样在机器学习领域,我用c/c++从头开始实现了一个基于ga的分类规则框架。 我还在一个示例项目中使用了GA来训练人工神经网络(ANN),而不是使用著名的反向传播算法。
此外,作为我研究生研究的一部分,我已经使用GA来训练隐马尔可夫模型,作为基于em的Baum-Welch算法的额外方法(还是在c/c++中)。
我曾经尝试制作一个围棋电脑播放器,完全基于基因编程。每个程序都将被视为一系列动作的评估函数。即使是在一个相当小的3x4板上,制作的程序也不是很好。
我使用Perl,并自己编写了所有代码。我今天会做不同的事情。
这是一段时间以前的事了,但我滚动了一个GA来进化实际上是图像处理内核的东西,以从哈勃太空望远镜(HST)图像中去除宇宙射线痕迹。标准的方法是用哈勃望远镜进行多次曝光,只保留所有图像中相同的东西。由于HST时间是如此宝贵,我是一个天文学爱好者,最近参加了进化计算大会,我考虑使用GA来清理单次曝光。
这些个体以树的形式存在,以3x3像素的区域作为输入,执行一些计算,并决定是否以及如何修改中心像素。通过将输出图像与用传统方法(即叠加曝光)清理的图像进行比较来判断适合度。
这实际上是可行的,但还不足以让我们放弃原来的方法。如果我的论文没有时间限制,我可能已经扩展了算法可用的遗传部分。我很确定我可以大大提高它。
使用的库:如果我没记错的话,用于天文图像数据处理和I/O的IRAF和cfitsio。