遗传算法(GA)和遗传规划(GP)是一个有趣的研究领域。

我想知道你使用GA/GP解决的具体问题,以及如果你没有自己的库/框架,你使用了什么库/框架。

问题:

你用GA/GP解决过什么问题? 你使用了哪些库/框架?

我在寻找第一手的经验,所以请不要回答,除非你有。


当前回答

我和一个同事正在研究一种解决方案,使用我们公司要求的各种标准将货物装载到卡车上。我一直在研究遗传算法的解决方案,而他正在使用具有激进修剪的分支和绑定。我们仍在实施这个解决方案的过程中,但到目前为止,我们已经取得了良好的结果。

其他回答

我为我的公司在1992年为货运业开发的3D激光表面轮廓系统开发了一个家庭酿造GA。 该系统依赖于三维三角测量,并使用了定制的激光线扫描仪,512x512相机(具有定制的捕获hw)。相机和激光之间的距离永远不会是精确的,相机的焦点也不会在你期望的256,256的位置找到!

尝试使用标准几何和模拟退火式方程求解来计算校准参数是一场噩梦。

遗传算法在一个晚上就完成了,我创建了一个校准立方体来测试它。我知道立方体的精度很高,因此我的想法是,我的遗传算法可以为每个扫描单元进化一组自定义三角测量参数,以克服生产变化。

这招很管用。退一步说,我简直目瞪口呆!在大约10代的时间里,我的“虚拟”立方体(由原始扫描生成并根据校准参数重新创建)实际上看起来像一个立方体!经过大约50代之后,我得到了我需要的校准。

足球引爆。我建立了一个GA系统来预测每周澳式足球比赛的结果。

A few years ago I got bored of the standard work football pool, everybody was just going online and taking the picks from some pundit in the press. So, I figured it couldn't be too hard to beat a bunch of broadcast journalism majors, right? My first thought was to take the results from Massey Ratings and then reveal at the end of the season my strategy after winning fame and glory. However, for reasons I've never discovered Massey does not track AFL. The cynic in me believes it is because the outcome of each AFL game has basically become random chance, but my complaints of recent rule changes belong in a different forum.

该系统基本上考虑了进攻强度、防守强度、主场优势、每周的改进(或缺乏)以及这些方面的变化速度。这为每支球队在整个赛季中建立了一组多项式方程。可以计算给定日期的每场比赛的获胜者和分数。我们的目标是找到最接近过去所有游戏结果的系数集,并使用该集合来预测接下来几周的游戏。

在实践中,该系统将找到能够准确预测过去90%以上游戏结果的解决方案。然后,它会成功地为即将到来的一周(即不在训练集中的那一周)挑选大约60-80%的比赛。

结果是:略高于中游水平。没有巨额奖金也没有能打败维加斯的系统。不过很有趣。

我从零开始构建一切,没有使用任何框架。

在我的本科论文中,我使用遗传编程来开发用于空中搜索和救援的合作搜索策略。我使用一个名为NetLogo(基于StarLogo)的开源代理建模平台作为世界模型。NetLogo是用java写的,因此提供了java api -所以GP框架需要基于java -我使用的一个叫做JGAP,还有另一个开源GP框架在java中,我知道叫做ECJ。

模拟运行起来非常慢(我认为这是由于NetLogo模型),所以我的功能/终端集非常有限,限制了搜索空间。尽管如此,我还是想出了一些很好的解决办法。如果你有这种冲动,你可以在我的论文http://www.cse.unsw.edu.au/~ekjo014/z3157867_Thesis.pdf的第三章读到

我曾经使用一个GA来优化内存地址的哈希函数。这些地址的页面大小为4K或8K,因此它们在地址的位模式中显示出一定的可预测性(最低有效位全为0;最初的哈希函数是“粗笨的”——它倾向于每第三个哈希桶聚集一次命中。改进后的算法具有近乎完美的分布。

As part of my thesis I wrote a generic java framework for the multi-objective optimisation algorithm mPOEMS (Multiobjective prototype optimization with evolved improvement steps), which is a GA using evolutionary concepts. It is generic in a way that all problem-independent parts have been separated from the problem-dependent parts, and an interface is povided to use the framework with only adding the problem-dependent parts. Thus one who wants to use the algorithm does not have to begin from zero, and it facilitates work a lot.

你可以在这里找到代码。

你可以用这个算法找到的解决方案已经在科学工作中与最先进的算法SPEA-2和NSGA进行了比较,并且已经证明 算法的性能相当,甚至更好,这取决于您用来衡量性能的指标,特别是取决于您正在关注的优化问题。

你可以在这里找到它。

同样,作为我的论文和工作证明的一部分,我将这个框架应用于项目组合管理中的项目选择问题。它是关于选择对公司增加最大价值的项目,支持公司的战略或支持任何其他任意目标。例如,从特定类别中选择一定数量的项目,或最大化项目协同作用,……

我的论文将该框架应用于项目选择问题: http://www.ub.tuwien.ac.at/dipl/2008/AC05038968.pdf

之后,我在一家财富500强公司的投资组合管理部门工作,在那里他们使用了一种商业软件,该软件还将GA应用于项目选择问题/投资组合优化。

更多资源:

框架文档: http://thomaskremmel.com/mpoems/mpoems_in_java_documentation.pdf

mPOEMS演示论文: http://portal.acm.org/citation.cfm?id=1792634.1792653

实际上,只要有一点热情,每个人都可以很容易地将通用框架的代码适应任意的多目标优化问题。