遗传算法(GA)和遗传规划(GP)是一个有趣的研究领域。

我想知道你使用GA/GP解决的具体问题,以及如果你没有自己的库/框架,你使用了什么库/框架。

问题:

你用GA/GP解决过什么问题? 你使用了哪些库/框架?

我在寻找第一手的经验,所以请不要回答,除非你有。


当前回答

In 2007-9 I developed some software for reading datamatrix patterns. Often these patterns were difficult to read, being indented into scratched surfaces with all kinds of reflectance properties, fuzzy chemically etched markings and so on. I used a GA to fine tune various parameters of the vision algorithms to give the best results on a database of 300 images having known properties. Parameters were things like downsampling resolution, RANSAC parameters, amount of erosion and dilation, low pass filtering radius, and a few others. Running the optimisation over several days this produced results which were about 20% better than naive values on a test set of images unseen during the optimisation phase.

这个系统完全是从零开始编写的,我没有使用任何其他库。我并不反对使用这些东西,只要它们能提供可靠的结果,但是您必须注意许可兼容性和代码可移植性问题。

其他回答

Several years ago I used ga's to optimize asr (automatic speech recognition) grammars for better recognition rates. I started with fairly simple lists of choices (where the ga was testing combinations of possible terms for each slot) and worked my way up to more open and complex grammars. Fitness was determined by measuring separation between terms/sequences under a kind of phonetic distance function. I also experimented with making weakly equivalent variations on a grammar to find one that compiled to a more compact representation (in the end I went with a direct algorithm, and it drastically increased the size of the "language" that we could use in applications).

最近,我将它们用作默认假设,以此来测试由各种算法生成的解决方案的质量。这主要涉及分类和不同类型的拟合问题(即创建一个“规则”,解释审查员对数据集所做的一组选择)。

几周前,我提出了一个关于SO的解决方案,使用遗传算法来解决图布局的问题。这是一个约束优化问题的例子。

同样在机器学习领域,我用c/c++从头开始实现了一个基于ga的分类规则框架。 我还在一个示例项目中使用了GA来训练人工神经网络(ANN),而不是使用著名的反向传播算法。

此外,作为我研究生研究的一部分,我已经使用GA来训练隐马尔可夫模型,作为基于em的Baum-Welch算法的额外方法(还是在c/c++中)。

在工作中,我遇到了这样一个问题:给定M个任务和N个dsp,如何将任务分配给dsp是最好的?“最佳”定义为“最大负载DSP的负载最小化”。有不同类型的任务,不同的任务类型有不同的性能分支,这取决于它们被分配到哪里,所以我将一组工作到dsp的分配编码为“DNA字符串”,然后使用遗传算法来“培育”我所能“培育”的最佳分配字符串。

它运行得相当好(比我之前的方法好得多,之前的方法是评估每个可能的组合……对于非平凡问题的大小,它将需要数年才能完成!),唯一的问题是无法判断是否已经达到了最优解。你只能决定当前的“最大努力”是否足够好,或者让它运行更长时间,看看它是否可以做得更好。

I used a simple genetic algorithm to optimize the signal to noise ratio of a wave that was represented as a binary string. By flipping the the bits certain ways over several million generations I was able to produce a transform that resulted in a higher signal to noise ratio of that wave. The algorithm could have also been "Simulated Annealing" but was not used in this case. At their core, genetic algorithms are simple, and this was about as simple of a use case that I have seen, so I didn't use a framework for generation creation and selection - only a random seed and the Signal-to-Noise Ratio function at hand.

There was an competition on codechef.com (great site by the way, monthly programming competitions) where one was supposed to solve an unsolveable sudoku (one should come as close as possible with as few wrong collumns/rows/etc as possible).What I would do, was to first generate a perfect sudoku and then override the fields, that have been given. From this pretty good basis on I used genetic programming to improve my solution.I couldn't think of a deterministic approach in this case, because the sudoku was 300x300 and search would've taken too long.