遗传算法(GA)和遗传规划(GP)是一个有趣的研究领域。
我想知道你使用GA/GP解决的具体问题,以及如果你没有自己的库/框架,你使用了什么库/框架。
问题:
你用GA/GP解决过什么问题? 你使用了哪些库/框架?
我在寻找第一手的经验,所以请不要回答,除非你有。
遗传算法(GA)和遗传规划(GP)是一个有趣的研究领域。
我想知道你使用GA/GP解决的具体问题,以及如果你没有自己的库/框架,你使用了什么库/框架。
问题:
你用GA/GP解决过什么问题? 你使用了哪些库/框架?
我在寻找第一手的经验,所以请不要回答,除非你有。
当前回答
As part of my undergraduate CompSci degree, we were assigned the problem of finding optimal jvm flags for the Jikes research virtual machine. This was evaluated using the Dicappo benchmark suite which returns a time to the console. I wrote a distributed gentic alogirthm that switched these flags to improve the runtime of the benchmark suite, although it took days to run to compensate for hardware jitter affecting the results. The only problem was I didn't properly learn about the compiler theory (which was the intent of the assignment).
我本可以用现有的默认标志来播种初始种群,但有趣的是,算法发现了一个与O3优化级别非常相似的配置(但实际上在许多测试中更快)。
编辑:我还用Python写了我自己的遗传算法框架,只是使用popen命令来运行各种基准测试,尽管如果不是评估作业,我会看看pyEvolve。
其他回答
我做了一些生活在这个小世界里的小动物。他们有一个神经网络大脑,从世界上接收一些输入,输出是其他行动的运动矢量。他们的大脑就是基因。
该项目从随机的动物群体开始,它们的大脑是随机的。输入和输出神经元是静止的,但中间的神经元不是。
环境中有食物和危险。食物可以增加能量,当你有足够的能量时,你就可以交配了。危险会降低能量,如果能量为0,他们就会死亡。
最终,这些生物进化到可以在世界各地移动,寻找食物和躲避危险。
于是我决定做一个小实验。我给这个生物的大脑一个输出神经元叫做“嘴”,一个输入神经元叫做“耳朵”。重新开始,惊讶地发现它们进化到最大化空间,每个生物都呆在各自的部分(食物是随机放置的)。他们学会了相互合作,不妨碍彼此。凡事总有例外。
然后我尝试了一些有趣的事情。死去的生物将成为食物。猜猜发生了什么事!进化出了两种生物,一种是成群攻击,另一种是高度回避。
那么这里的教训是什么呢?沟通意味着合作。一旦你引入了一个元素,即伤害他人意味着你获得了一些东西,那么合作就会被破坏。
我想知道这对自由市场和资本主义体系有何影响。我的意思是,如果企业可以伤害他们的竞争并侥幸逃脱,那么很明显,他们会尽其所能来伤害竞争。
编辑:
我用c++写的,没有使用框架。我自己写了神经网络和GA代码。埃里克,谢谢你这么说。人们通常不相信GA的力量(尽管其局限性很明显),直到他们玩过它。GA很简单,但不过分简单化。
对于怀疑者来说,神经网络已经被证明能够模拟任何功能,只要它们有不止一层。遗传算法是一种非常简单的方法,可以在解空间中找到局部和全局最小值。将遗传算法与神经网络结合起来,你就有了一个很好的方法来寻找函数,为一般问题找到近似解。因为我们使用的是神经网络,所以我们是针对某些输入优化函数,而不是像其他人使用遗传算法那样对某个函数的某些输入进行优化
下面是生存示例的演示代码:http://www.mempko.com/darcs/neural/demos/eaters/ 建立产品说明:
安装darcs, libboost, liballegro, gcc, cmake, make Darcs克隆——懒惰http://www.mempko.com/darcs/neural/ cd神经 cmake。 使 cd演示/吃 吃。/
我不知道家庭作业算不算…
在我学习期间,我们推出了自己的程序来解决旅行推销员问题。
我们的想法是对几个标准进行比较(映射问题的难度,性能等),我们还使用了其他技术,如模拟退火。
它运行得很好,但我们花了一段时间来理解如何正确地进行“复制”阶段:将手头的问题建模成适合遗传编程的东西,这对我来说是最难的部分……
这是一门有趣的课程,因为我们也涉猎了神经网络之类的知识。
我想知道是否有人在“生产”代码中使用这种编程。
在学校的一次研讨会上,我们开发了一个基于音乐模式生成音乐的应用程序。该程序是在Java中构建的,输出是一个midi文件与歌曲。我们使用不同的GA方法来生成音乐。我认为这个程序可以用来探索新的组合。
在我的本科论文中,我使用遗传编程来开发用于空中搜索和救援的合作搜索策略。我使用一个名为NetLogo(基于StarLogo)的开源代理建模平台作为世界模型。NetLogo是用java写的,因此提供了java api -所以GP框架需要基于java -我使用的一个叫做JGAP,还有另一个开源GP框架在java中,我知道叫做ECJ。
模拟运行起来非常慢(我认为这是由于NetLogo模型),所以我的功能/终端集非常有限,限制了搜索空间。尽管如此,我还是想出了一些很好的解决办法。如果你有这种冲动,你可以在我的论文http://www.cse.unsw.edu.au/~ekjo014/z3157867_Thesis.pdf的第三章读到
没有家庭作业。
1995年,我作为专业程序员的第一份工作是为标准普尔500指数期货编写一个基于遗传算法的自动交易系统。该应用程序是用Visual Basic 3 [!我不知道我当时是怎么做的,因为VB3甚至没有课程。
The application started with a population of randomly-generated fixed-length strings (the "gene" part), each of which corresponded to a specific shape in the minute-by-minute price data of the S&P500 futures, as well as a specific order (buy or sell) and stop-loss and stop-profit amounts. Each string (or "gene") had its profit performance evaluated by a run through 3 years of historical data; whenever the specified "shape" matched the historical data, I assumed the corresponding buy or sell order and evaluated the trade's result. I added the caveat that each gene started with a fixed amount of money and could thus potentially go broke and be removed from the gene pool entirely.
在对种群的每一次评估之后,幸存者被随机杂交(通过混合来自两个亲本的片段),一个基因被选择为亲本的可能性与它产生的利润成正比。我还添加了点突变的可能性,让事情变得有趣一点。经过几百代这样的基因,我最终得到了一个基因群,它可以把5000美元变成平均约10000美元,而且没有死亡/破碎的可能性(当然是在历史数据上)。
Unfortunately, I never got the chance to use this system live, since my boss lost close to $100,000 in less than 3 months trading the traditional way, and he lost his willingness to continue with the project. In retrospect, I think the system would have made huge profits - not because I was necessarily doing anything right, but because the population of genes that I produced happened to be biased towards buy orders (as opposed to sell orders) by about a 5:1 ratio. And as we know with our 20/20 hindsight, the market went up a bit after 1995.