遗传算法(GA)和遗传规划(GP)是一个有趣的研究领域。

我想知道你使用GA/GP解决的具体问题,以及如果你没有自己的库/框架,你使用了什么库/框架。

问题:

你用GA/GP解决过什么问题? 你使用了哪些库/框架?

我在寻找第一手的经验,所以请不要回答,除非你有。


当前回答

我曾经使用一个GA来优化内存地址的哈希函数。这些地址的页面大小为4K或8K,因此它们在地址的位模式中显示出一定的可预测性(最低有效位全为0;最初的哈希函数是“粗笨的”——它倾向于每第三个哈希桶聚集一次命中。改进后的算法具有近乎完美的分布。

其他回答

我构建了一个简单的GA,用于在音乐播放时从频谱中提取有用的模式。输出用于驱动winamp插件中的图形效果。

输入:一些FFT帧(想象一个二维浮点数组) 输出:单个浮点值(输入的加权和),阈值为0.0或1.0 基因:输入权重 适应度函数:占空比、脉宽、BPM在合理范围内的组合。

我将一些ga调整到频谱的不同部分以及不同的BPM限制,所以它们不会趋向于收敛到相同的模式。来自每个种群的前4个的输出被发送到渲染引擎。

一个有趣的副作用是,整个人群的平均健康状况是音乐变化的一个很好的指标,尽管通常需要4-5秒才能发现。

在大学期间,我们使用NERO(神经网络和遗传算法的结合)来教游戏中的机器人做出智能决策。非常酷。

我不知道家庭作业算不算…

在我学习期间,我们推出了自己的程序来解决旅行推销员问题。

我们的想法是对几个标准进行比较(映射问题的难度,性能等),我们还使用了其他技术,如模拟退火。

它运行得很好,但我们花了一段时间来理解如何正确地进行“复制”阶段:将手头的问题建模成适合遗传编程的东西,这对我来说是最难的部分……

这是一门有趣的课程,因为我们也涉猎了神经网络之类的知识。

我想知道是否有人在“生产”代码中使用这种编程。

这是一段时间以前的事了,但我滚动了一个GA来进化实际上是图像处理内核的东西,以从哈勃太空望远镜(HST)图像中去除宇宙射线痕迹。标准的方法是用哈勃望远镜进行多次曝光,只保留所有图像中相同的东西。由于HST时间是如此宝贵,我是一个天文学爱好者,最近参加了进化计算大会,我考虑使用GA来清理单次曝光。

这些个体以树的形式存在,以3x3像素的区域作为输入,执行一些计算,并决定是否以及如何修改中心像素。通过将输出图像与用传统方法(即叠加曝光)清理的图像进行比较来判断适合度。

这实际上是可行的,但还不足以让我们放弃原来的方法。如果我的论文没有时间限制,我可能已经扩展了算法可用的遗传部分。我很确定我可以大大提高它。

使用的库:如果我没记错的话,用于天文图像数据处理和I/O的IRAF和cfitsio。

As part of my thesis I wrote a generic java framework for the multi-objective optimisation algorithm mPOEMS (Multiobjective prototype optimization with evolved improvement steps), which is a GA using evolutionary concepts. It is generic in a way that all problem-independent parts have been separated from the problem-dependent parts, and an interface is povided to use the framework with only adding the problem-dependent parts. Thus one who wants to use the algorithm does not have to begin from zero, and it facilitates work a lot.

你可以在这里找到代码。

你可以用这个算法找到的解决方案已经在科学工作中与最先进的算法SPEA-2和NSGA进行了比较,并且已经证明 算法的性能相当,甚至更好,这取决于您用来衡量性能的指标,特别是取决于您正在关注的优化问题。

你可以在这里找到它。

同样,作为我的论文和工作证明的一部分,我将这个框架应用于项目组合管理中的项目选择问题。它是关于选择对公司增加最大价值的项目,支持公司的战略或支持任何其他任意目标。例如,从特定类别中选择一定数量的项目,或最大化项目协同作用,……

我的论文将该框架应用于项目选择问题: http://www.ub.tuwien.ac.at/dipl/2008/AC05038968.pdf

之后,我在一家财富500强公司的投资组合管理部门工作,在那里他们使用了一种商业软件,该软件还将GA应用于项目选择问题/投资组合优化。

更多资源:

框架文档: http://thomaskremmel.com/mpoems/mpoems_in_java_documentation.pdf

mPOEMS演示论文: http://portal.acm.org/citation.cfm?id=1792634.1792653

实际上,只要有一点热情,每个人都可以很容易地将通用框架的代码适应任意的多目标优化问题。