遗传算法(GA)和遗传规划(GP)是一个有趣的研究领域。

我想知道你使用GA/GP解决的具体问题,以及如果你没有自己的库/框架,你使用了什么库/框架。

问题:

你用GA/GP解决过什么问题? 你使用了哪些库/框架?

我在寻找第一手的经验,所以请不要回答,除非你有。


当前回答

除了一些常见的问题,如《旅行推销员》和Roger Alsing的《蒙娜丽莎》程序的变体,我还编写了一个进化数独求解器(这需要我自己更多的原创想法,而不仅仅是重新实现别人的想法)。解决数独游戏有更可靠的算法,但进化方法效果相当好。

在过去的几天里,在Reddit上看到这篇文章后,我一直在玩一个进化程序来寻找扑克的“冷牌”。目前还不太令人满意,但我想我可以改进。

我有自己的进化算法框架。

其他回答

当你打算粉刷你的房子时,通常很难得到一个确切的颜色组合。通常,你脑海中有一些颜色,但它不是其中一种颜色,供应商向你展示。

昨天,我的GA研究员教授提到了一个发生在德国的真实故事(对不起,我没有更多的参考资料,是的,如果有人要求我可以找到它)。这个家伙(让我们称他为配色员)曾经挨家挨户地帮助人们找到确切的颜色代码(RGB),这将是客户心目中的衣柜。下面是他的做法:

The color guy used to carry with him a software program which used GA. He used to start with 4 different colors- each coded as a coded Chromosome (whose decoded value would be a RGB value). The consumer picks 1 of the 4 colors (Which is the closest to which he/she has in mind). The program would then assign the maximum fitness to that individual and move onto the next generation using mutation/crossover. The above steps would be repeated till the consumer had found the exact color and then color guy used to tell him the RGB combination!

通过将最大适应度分配给接近消费者想法的颜色,配色员的程序增加了收敛到消费者想法的颜色的机会。我发现它很有趣!

现在我已经得到了一个-1,如果你计划更多的-1,请说明这样做的原因!

在我的婚宴上,我使用GA来优化座位分配。80位客人超过10张桌子。评估功能是基于让人们和他们的约会对象在一起,把有共同点的人放在一起,把观点完全相反的人放在不同的桌子上。

我运行了几次。每次我都有九张好桌子,还有一张都是怪球。最后,我妻子安排了座位。

我的旅行推销员优化器使用了一种新的染色体到行程的映射,这使得繁殖和变异染色体变得很简单,没有产生无效行程的风险。

更新:因为一些人问了…

以任意但一致的顺序(如按字母顺序排列)的客人(或城市)数组开始。称之为参考溶液。把客人的座位号看作是他/她的座位号。

我们没有尝试直接在染色体中编码这种顺序,而是编码将参考溶液转化为新溶液的指令。具体来说,我们将染色体视为数组中要交换的索引列表。为了解码染色体,我们从参考溶液开始,并应用由染色体指示的所有交换。交换数组中的两个条目总是会得到一个有效的解决方案:每个来宾(或城市)仍然只出现一次。

因此,染色体可以随机生成,突变,并与其他染色体交叉,总是会产生有效的解决方案。

我曾经尝试制作一个围棋电脑播放器,完全基于基因编程。每个程序都将被视为一系列动作的评估函数。即使是在一个相当小的3x4板上,制作的程序也不是很好。

我使用Perl,并自己编写了所有代码。我今天会做不同的事情。

我年轻时就尝试过GA。我用Python写了一个模拟器,工作原理如下。

这些基因编码了神经网络的权重。

神经网络的输入是检测触摸的“天线”。较高的数值表示非常接近,0表示不接触。

输出是两个“轮子”。如果两个轮子都向前,这个人也向前。如果轮子方向相反,他就会转向。输出的强度决定了车轮转动的速度。

生成了一个简单的迷宫。这真的很简单,甚至很愚蠢。屏幕下方是起点,上方是球门,中间有四面墙。每面墙都有一个随机的空间,所以总是有一条路。

一开始我只是随机挑选一些人(我认为他们是bug)。只要有一个人达到了目标,或者达到了时间限制,就会计算适合度。它与当时到目标的距离成反比。

然后我把它们配对,“培育”它们来创造下一代。被选择繁殖的概率与它的适应性成正比。有时,这意味着如果一个人具有非常高的相对适应性,就会与自己反复繁殖。

I thought they would develop a "left wall hugging" behavior, but they always seemed to follow something less optimal. In every experiment, the bugs converged to a spiral pattern. They would spiral outward until they touched a wall to the right. They'd follow that, then when they got to the gap, they'd spiral down (away from the gap) and around. They would make a 270 degree turn to the left, then usually enter the gap. This would get them through a majority of the walls, and often to the goal.

我添加的一个功能是在基因中放入一个颜色矢量来跟踪个体之间的相关性。几代之后,它们的颜色都是一样的,这说明我应该有更好的繁殖策略。

我试着让他们制定更好的策略。我把神经网络复杂化了——增加了记忆和其他东西。这没有用。我总是看到同样的策略。

我尝试了各种方法,比如建立单独的基因库,在100代之后才重新组合。但没有什么能促使他们采取更好的策略。也许这是不可能的。

另一个有趣的事情是绘制适应度随时间变化的图表。有明确的模式,比如最大适合度在上升之前会下降。我从未见过一本进化论的书谈到这种可能性。

除了一些常见的问题,如《旅行推销员》和Roger Alsing的《蒙娜丽莎》程序的变体,我还编写了一个进化数独求解器(这需要我自己更多的原创想法,而不仅仅是重新实现别人的想法)。解决数独游戏有更可靠的算法,但进化方法效果相当好。

在过去的几天里,在Reddit上看到这篇文章后,我一直在玩一个进化程序来寻找扑克的“冷牌”。目前还不太令人满意,但我想我可以改进。

我有自己的进化算法框架。