遗传算法(GA)和遗传规划(GP)是一个有趣的研究领域。
我想知道你使用GA/GP解决的具体问题,以及如果你没有自己的库/框架,你使用了什么库/框架。
问题:
你用GA/GP解决过什么问题? 你使用了哪些库/框架?
我在寻找第一手的经验,所以请不要回答,除非你有。
遗传算法(GA)和遗传规划(GP)是一个有趣的研究领域。
我想知道你使用GA/GP解决的具体问题,以及如果你没有自己的库/框架,你使用了什么库/框架。
问题:
你用GA/GP解决过什么问题? 你使用了哪些库/框架?
我在寻找第一手的经验,所以请不要回答,除非你有。
当前回答
我不知道家庭作业算不算…
在我学习期间,我们推出了自己的程序来解决旅行推销员问题。
我们的想法是对几个标准进行比较(映射问题的难度,性能等),我们还使用了其他技术,如模拟退火。
它运行得很好,但我们花了一段时间来理解如何正确地进行“复制”阶段:将手头的问题建模成适合遗传编程的东西,这对我来说是最难的部分……
这是一门有趣的课程,因为我们也涉猎了神经网络之类的知识。
我想知道是否有人在“生产”代码中使用这种编程。
其他回答
这是一段时间以前的事了,但我滚动了一个GA来进化实际上是图像处理内核的东西,以从哈勃太空望远镜(HST)图像中去除宇宙射线痕迹。标准的方法是用哈勃望远镜进行多次曝光,只保留所有图像中相同的东西。由于HST时间是如此宝贵,我是一个天文学爱好者,最近参加了进化计算大会,我考虑使用GA来清理单次曝光。
这些个体以树的形式存在,以3x3像素的区域作为输入,执行一些计算,并决定是否以及如何修改中心像素。通过将输出图像与用传统方法(即叠加曝光)清理的图像进行比较来判断适合度。
这实际上是可行的,但还不足以让我们放弃原来的方法。如果我的论文没有时间限制,我可能已经扩展了算法可用的遗传部分。我很确定我可以大大提高它。
使用的库:如果我没记错的话,用于天文图像数据处理和I/O的IRAF和cfitsio。
当你打算粉刷你的房子时,通常很难得到一个确切的颜色组合。通常,你脑海中有一些颜色,但它不是其中一种颜色,供应商向你展示。
昨天,我的GA研究员教授提到了一个发生在德国的真实故事(对不起,我没有更多的参考资料,是的,如果有人要求我可以找到它)。这个家伙(让我们称他为配色员)曾经挨家挨户地帮助人们找到确切的颜色代码(RGB),这将是客户心目中的衣柜。下面是他的做法:
The color guy used to carry with him a software program which used GA. He used to start with 4 different colors- each coded as a coded Chromosome (whose decoded value would be a RGB value). The consumer picks 1 of the 4 colors (Which is the closest to which he/she has in mind). The program would then assign the maximum fitness to that individual and move onto the next generation using mutation/crossover. The above steps would be repeated till the consumer had found the exact color and then color guy used to tell him the RGB combination!
通过将最大适应度分配给接近消费者想法的颜色,配色员的程序增加了收敛到消费者想法的颜色的机会。我发现它很有趣!
现在我已经得到了一个-1,如果你计划更多的-1,请说明这样做的原因!
除了一些常见的问题,如《旅行推销员》和Roger Alsing的《蒙娜丽莎》程序的变体,我还编写了一个进化数独求解器(这需要我自己更多的原创想法,而不仅仅是重新实现别人的想法)。解决数独游戏有更可靠的算法,但进化方法效果相当好。
在过去的几天里,在Reddit上看到这篇文章后,我一直在玩一个进化程序来寻找扑克的“冷牌”。目前还不太令人满意,但我想我可以改进。
我有自己的进化算法框架。
在工作中,我遇到了这样一个问题:给定M个任务和N个dsp,如何将任务分配给dsp是最好的?“最佳”定义为“最大负载DSP的负载最小化”。有不同类型的任务,不同的任务类型有不同的性能分支,这取决于它们被分配到哪里,所以我将一组工作到dsp的分配编码为“DNA字符串”,然后使用遗传算法来“培育”我所能“培育”的最佳分配字符串。
它运行得相当好(比我之前的方法好得多,之前的方法是评估每个可能的组合……对于非平凡问题的大小,它将需要数年才能完成!),唯一的问题是无法判断是否已经达到了最优解。你只能决定当前的“最大努力”是否足够好,或者让它运行更长时间,看看它是否可以做得更好。
我曾经使用一个GA来优化内存地址的哈希函数。这些地址的页面大小为4K或8K,因此它们在地址的位模式中显示出一定的可预测性(最低有效位全为0;最初的哈希函数是“粗笨的”——它倾向于每第三个哈希桶聚集一次命中。改进后的算法具有近乎完美的分布。