遗传算法(GA)和遗传规划(GP)是一个有趣的研究领域。
我想知道你使用GA/GP解决的具体问题,以及如果你没有自己的库/框架,你使用了什么库/框架。
问题:
你用GA/GP解决过什么问题? 你使用了哪些库/框架?
我在寻找第一手的经验,所以请不要回答,除非你有。
遗传算法(GA)和遗传规划(GP)是一个有趣的研究领域。
我想知道你使用GA/GP解决的具体问题,以及如果你没有自己的库/框架,你使用了什么库/框架。
问题:
你用GA/GP解决过什么问题? 你使用了哪些库/框架?
我在寻找第一手的经验,所以请不要回答,除非你有。
当前回答
首先,Jonathan Koza的《遗传编程》(在亚马逊上)几乎是一本关于遗传和进化算法/编程技术的书,有很多例子。我强烈建议你去看看。
As for my own use of a genetic algorithm, I used a (home grown) genetic algorithm to evolve a swarm algorithm for an object collection/destruction scenario (practical purpose could have been clearing a minefield). Here is a link to the paper. The most interesting part of what I did was the multi-staged fitness function, which was a necessity since the simple fitness functions did not provide enough information for the genetic algorithm to sufficiently differentiate between members of the population.
其他回答
As part of my undergraduate CompSci degree, we were assigned the problem of finding optimal jvm flags for the Jikes research virtual machine. This was evaluated using the Dicappo benchmark suite which returns a time to the console. I wrote a distributed gentic alogirthm that switched these flags to improve the runtime of the benchmark suite, although it took days to run to compensate for hardware jitter affecting the results. The only problem was I didn't properly learn about the compiler theory (which was the intent of the assignment).
我本可以用现有的默认标志来播种初始种群,但有趣的是,算法发现了一个与O3优化级别非常相似的配置(但实际上在许多测试中更快)。
编辑:我还用Python写了我自己的遗传算法框架,只是使用popen命令来运行各种基准测试,尽管如果不是评估作业,我会看看pyEvolve。
我曾经使用一个GA来优化内存地址的哈希函数。这些地址的页面大小为4K或8K,因此它们在地址的位模式中显示出一定的可预测性(最低有效位全为0;最初的哈希函数是“粗笨的”——它倾向于每第三个哈希桶聚集一次命中。改进后的算法具有近乎完美的分布。
我和一个同事正在研究一种解决方案,使用我们公司要求的各种标准将货物装载到卡车上。我一直在研究遗传算法的解决方案,而他正在使用具有激进修剪的分支和绑定。我们仍在实施这个解决方案的过程中,但到目前为止,我们已经取得了良好的结果。
Several years ago I used ga's to optimize asr (automatic speech recognition) grammars for better recognition rates. I started with fairly simple lists of choices (where the ga was testing combinations of possible terms for each slot) and worked my way up to more open and complex grammars. Fitness was determined by measuring separation between terms/sequences under a kind of phonetic distance function. I also experimented with making weakly equivalent variations on a grammar to find one that compiled to a more compact representation (in the end I went with a direct algorithm, and it drastically increased the size of the "language" that we could use in applications).
最近,我将它们用作默认假设,以此来测试由各种算法生成的解决方案的质量。这主要涉及分类和不同类型的拟合问题(即创建一个“规则”,解释审查员对数据集所做的一组选择)。
这是一段时间以前的事了,但我滚动了一个GA来进化实际上是图像处理内核的东西,以从哈勃太空望远镜(HST)图像中去除宇宙射线痕迹。标准的方法是用哈勃望远镜进行多次曝光,只保留所有图像中相同的东西。由于HST时间是如此宝贵,我是一个天文学爱好者,最近参加了进化计算大会,我考虑使用GA来清理单次曝光。
这些个体以树的形式存在,以3x3像素的区域作为输入,执行一些计算,并决定是否以及如何修改中心像素。通过将输出图像与用传统方法(即叠加曝光)清理的图像进行比较来判断适合度。
这实际上是可行的,但还不足以让我们放弃原来的方法。如果我的论文没有时间限制,我可能已经扩展了算法可用的遗传部分。我很确定我可以大大提高它。
使用的库:如果我没记错的话,用于天文图像数据处理和I/O的IRAF和cfitsio。