遗传算法(GA)和遗传规划(GP)是一个有趣的研究领域。
我想知道你使用GA/GP解决的具体问题,以及如果你没有自己的库/框架,你使用了什么库/框架。
问题:
你用GA/GP解决过什么问题? 你使用了哪些库/框架?
我在寻找第一手的经验,所以请不要回答,除非你有。
遗传算法(GA)和遗传规划(GP)是一个有趣的研究领域。
我想知道你使用GA/GP解决的具体问题,以及如果你没有自己的库/框架,你使用了什么库/框架。
问题:
你用GA/GP解决过什么问题? 你使用了哪些库/框架?
我在寻找第一手的经验,所以请不要回答,除非你有。
当前回答
在读完《盲人钟表匠》之后,我对道金斯所说的帕斯卡程序产生了兴趣,他开发了一个可以随着时间进化的生物模型。我对使用Swarm编写自己的程序很感兴趣。我没有画出他画的那些奇特的生物图形,但我的“染色体”控制着影响生物体生存能力的特征。他们生活在一个简单的世界里,可以与彼此和环境决一死战。
生物的生存或死亡部分取决于偶然性,但也取决于它们如何有效地适应当地环境,如何有效地消耗营养物质以及如何成功地繁殖。这很有趣,但也向我妻子证明了我是一个极客。
其他回答
在学校的一次研讨会上,我们开发了一个基于音乐模式生成音乐的应用程序。该程序是在Java中构建的,输出是一个midi文件与歌曲。我们使用不同的GA方法来生成音乐。我认为这个程序可以用来探索新的组合。
Several years ago I used ga's to optimize asr (automatic speech recognition) grammars for better recognition rates. I started with fairly simple lists of choices (where the ga was testing combinations of possible terms for each slot) and worked my way up to more open and complex grammars. Fitness was determined by measuring separation between terms/sequences under a kind of phonetic distance function. I also experimented with making weakly equivalent variations on a grammar to find one that compiled to a more compact representation (in the end I went with a direct algorithm, and it drastically increased the size of the "language" that we could use in applications).
最近,我将它们用作默认假设,以此来测试由各种算法生成的解决方案的质量。这主要涉及分类和不同类型的拟合问题(即创建一个“规则”,解释审查员对数据集所做的一组选择)。
I used a simple genetic algorithm to optimize the signal to noise ratio of a wave that was represented as a binary string. By flipping the the bits certain ways over several million generations I was able to produce a transform that resulted in a higher signal to noise ratio of that wave. The algorithm could have also been "Simulated Annealing" but was not used in this case. At their core, genetic algorithms are simple, and this was about as simple of a use case that I have seen, so I didn't use a framework for generation creation and selection - only a random seed and the Signal-to-Noise Ratio function at hand.
除了一些常见的问题,如《旅行推销员》和Roger Alsing的《蒙娜丽莎》程序的变体,我还编写了一个进化数独求解器(这需要我自己更多的原创想法,而不仅仅是重新实现别人的想法)。解决数独游戏有更可靠的算法,但进化方法效果相当好。
在过去的几天里,在Reddit上看到这篇文章后,我一直在玩一个进化程序来寻找扑克的“冷牌”。目前还不太令人满意,但我想我可以改进。
我有自己的进化算法框架。
我年轻时就尝试过GA。我用Python写了一个模拟器,工作原理如下。
这些基因编码了神经网络的权重。
神经网络的输入是检测触摸的“天线”。较高的数值表示非常接近,0表示不接触。
输出是两个“轮子”。如果两个轮子都向前,这个人也向前。如果轮子方向相反,他就会转向。输出的强度决定了车轮转动的速度。
生成了一个简单的迷宫。这真的很简单,甚至很愚蠢。屏幕下方是起点,上方是球门,中间有四面墙。每面墙都有一个随机的空间,所以总是有一条路。
一开始我只是随机挑选一些人(我认为他们是bug)。只要有一个人达到了目标,或者达到了时间限制,就会计算适合度。它与当时到目标的距离成反比。
然后我把它们配对,“培育”它们来创造下一代。被选择繁殖的概率与它的适应性成正比。有时,这意味着如果一个人具有非常高的相对适应性,就会与自己反复繁殖。
I thought they would develop a "left wall hugging" behavior, but they always seemed to follow something less optimal. In every experiment, the bugs converged to a spiral pattern. They would spiral outward until they touched a wall to the right. They'd follow that, then when they got to the gap, they'd spiral down (away from the gap) and around. They would make a 270 degree turn to the left, then usually enter the gap. This would get them through a majority of the walls, and often to the goal.
我添加的一个功能是在基因中放入一个颜色矢量来跟踪个体之间的相关性。几代之后,它们的颜色都是一样的,这说明我应该有更好的繁殖策略。
我试着让他们制定更好的策略。我把神经网络复杂化了——增加了记忆和其他东西。这没有用。我总是看到同样的策略。
我尝试了各种方法,比如建立单独的基因库,在100代之后才重新组合。但没有什么能促使他们采取更好的策略。也许这是不可能的。
另一个有趣的事情是绘制适应度随时间变化的图表。有明确的模式,比如最大适合度在上升之前会下降。我从未见过一本进化论的书谈到这种可能性。