遗传算法(GA)和遗传规划(GP)是一个有趣的研究领域。
我想知道你使用GA/GP解决的具体问题,以及如果你没有自己的库/框架,你使用了什么库/框架。
问题:
你用GA/GP解决过什么问题? 你使用了哪些库/框架?
我在寻找第一手的经验,所以请不要回答,除非你有。
遗传算法(GA)和遗传规划(GP)是一个有趣的研究领域。
我想知道你使用GA/GP解决的具体问题,以及如果你没有自己的库/框架,你使用了什么库/框架。
问题:
你用GA/GP解决过什么问题? 你使用了哪些库/框架?
我在寻找第一手的经验,所以请不要回答,除非你有。
当前回答
我是一个研究使用进化计算(EC)来自动修复现有程序中的错误的团队的成员。我们已经在现实世界的软件项目中成功地修复了一些真实的错误(参见本项目的主页)。
这种EC修复技术有两种应用。
The first (code and reproduction information available through the project page) evolves the abstract syntax trees parsed from existing C programs and is implemented in Ocaml using our own custom EC engine. The second (code and reproduction information available through the project page), my personal contribution to the project, evolves the x86 assembly or Java byte code compiled from programs written in a number of programming languages. This application is implemented in Clojure and also uses its own custom built EC engine.
进化计算的一个优点是技术的简单性,使得编写自己的自定义实现不太困难。有关遗传规划的一个很好的免费的介绍性文本,请参阅遗传规划的现场指南。
其他回答
我曾经使用一个GA来优化内存地址的哈希函数。这些地址的页面大小为4K或8K,因此它们在地址的位模式中显示出一定的可预测性(最低有效位全为0;最初的哈希函数是“粗笨的”——它倾向于每第三个哈希桶聚集一次命中。改进后的算法具有近乎完美的分布。
我曾经尝试制作一个围棋电脑播放器,完全基于基因编程。每个程序都将被视为一系列动作的评估函数。即使是在一个相当小的3x4板上,制作的程序也不是很好。
我使用Perl,并自己编写了所有代码。我今天会做不同的事情。
2004年1月,飞利浦新显示技术公司(Philips New Display Technologies)联系了我,他们正在为有史以来第一款商业电子墨水——索尼Librie——制造电子产品。索尼Librie只在日本上市,比亚马逊Kindle和其他电子墨水在美国和欧洲上市早了好几年。
飞利浦的工程师遇到了一个大问题。在产品上市的几个月前,他们在换页面时仍然会出现重影。问题是产生静电场的200个驱动器。每个驱动器都有一个特定的电压,必须设置在0到1000mv之间。但如果你改变其中一个,就会改变一切。
因此,单独优化每个驱动器的电压是不可能的。可能的值组合的数量以数十亿计,一个特殊的相机大约需要1分钟来评估一个组合。工程师们尝试了许多标准的优化技术,但都没有达到预期的效果。
首席工程师联系了我,因为我之前已经向开源社区发布了一个遗传编程库。他问全科医生/全科医生是否会帮忙,以及我是否能参与其中。我这样做了,在大约一个月的时间里,我们一起工作,我在合成数据上编写和调整GA库,他则将其集成到他们的系统中。然后,有一个周末,他们让它和真人一起直播。
接下来的周一,我收到了他和他们的硬件设计师发来的溢美之词,说没人会相信GA发现的惊人结果。就是这样。同年晚些时候,该产品上市了。
我没有为此得到一分钱,但我有“吹嘘”的权利。他们从一开始就说他们已经超出预算了,所以我在开始工作之前就知道是什么交易。这对于气体的应用是一个很好的例子。:)
我使用遗传算法(以及一些相关技术)来确定风险管理系统的最佳设置,该系统试图阻止淘金者使用偷来的信用卡来购买mmo游戏。该系统将接收数千笔具有“已知”值的交易(欺诈与否),并找出最佳设置组合,以正确识别欺诈交易,而不会产生太多误报。
We had data on several dozen (boolean) characteristics of a transaction, each of which was given a value and totalled up. If the total was higher than a threshold, the transaction was fraud. The GA would create a large number of random sets of values, evaluate them against a corpus of known data, select the ones that scored the best (on both fraud detection and limiting the number of false positives), then cross breed the best few from each generation to produce a new generation of candidates. After a certain number of generations the best scoring set of values was deemed the winner.
创建用于测试的已知数据语料库是该系统的阿喀琉斯之踵。如果你等待退款,你在试图回应欺诈者时就会落后几个月,所以有人必须手动审查大量交易,以建立数据库,而不必等待太长时间。
这最终确定了绝大多数的欺诈行为,但在最容易欺诈的项目上,这一比例无法低于1%(考虑到90%的交易可能是欺诈,这已经相当不错了)。
我用perl完成了所有这些。在一个相当旧的linux机器上运行一次软件需要1-2个小时(20分钟通过WAN链路加载数据,其余时间用于处理)。任何给定代的大小都受到可用RAM的限制。我会一遍又一遍地运行它,稍微改变参数,寻找一个特别好的结果集。
总而言之,它避免了手动调整数十个欺诈指标的相对值所带来的一些失误,并且始终能够提出比我手动创建的更好的解决方案。AFAIK,它仍然在使用(大约3年后我写了它)。
进化计算研究生班: 开发了TopCoder马拉松比赛49:megpartty的解决方案。我的小组正在测试不同的域表示法,以及不同的表示法如何影响ga找到正确答案的能力。我们为这个问题编写了自己的代码。
Neuroevolution and Generative and Developmental Systems, Graduate Class: Developed an Othello game board evaluator that was used in the min-max tree of a computer player. The player was set to evaluate one-deep into the game, and trained to play against a greedy computer player that considered corners of vital importance. The training player saw either 3 or 4 deep (I'll need to look at my config files to answer, and they're on a different computer). The goal of the experiment was to compare Novelty Search to traditional, fitness-based search in the Game Board Evaluation domain. Results were relatively inconclusive, unfortunately. While both the novelty search and fitness-based search methods came to a solution (showing that Novelty Search can be used in the Othello domain), it was possible to have a solution to this domain with no hidden nodes. Apparently I didn't create a sufficiently competent trainer if a linear solution was available (and it was possible to have a solution right out of the gates). I believe my implementation of Fitness-based search produced solutions more quickly than my implementation of Novelty search, this time. (this isn't always the case). Either way, I used ANJI, "Another NEAT Java Implementation" for the neural network code, with various modifications. The Othello game I wrote myself.