遗传算法(GA)和遗传规划(GP)是一个有趣的研究领域。
我想知道你使用GA/GP解决的具体问题,以及如果你没有自己的库/框架,你使用了什么库/框架。
问题:
你用GA/GP解决过什么问题? 你使用了哪些库/框架?
我在寻找第一手的经验,所以请不要回答,除非你有。
遗传算法(GA)和遗传规划(GP)是一个有趣的研究领域。
我想知道你使用GA/GP解决的具体问题,以及如果你没有自己的库/框架,你使用了什么库/框架。
问题:
你用GA/GP解决过什么问题? 你使用了哪些库/框架?
我在寻找第一手的经验,所以请不要回答,除非你有。
当前回答
我使用遗传算法(以及一些相关技术)来确定风险管理系统的最佳设置,该系统试图阻止淘金者使用偷来的信用卡来购买mmo游戏。该系统将接收数千笔具有“已知”值的交易(欺诈与否),并找出最佳设置组合,以正确识别欺诈交易,而不会产生太多误报。
We had data on several dozen (boolean) characteristics of a transaction, each of which was given a value and totalled up. If the total was higher than a threshold, the transaction was fraud. The GA would create a large number of random sets of values, evaluate them against a corpus of known data, select the ones that scored the best (on both fraud detection and limiting the number of false positives), then cross breed the best few from each generation to produce a new generation of candidates. After a certain number of generations the best scoring set of values was deemed the winner.
创建用于测试的已知数据语料库是该系统的阿喀琉斯之踵。如果你等待退款,你在试图回应欺诈者时就会落后几个月,所以有人必须手动审查大量交易,以建立数据库,而不必等待太长时间。
这最终确定了绝大多数的欺诈行为,但在最容易欺诈的项目上,这一比例无法低于1%(考虑到90%的交易可能是欺诈,这已经相当不错了)。
我用perl完成了所有这些。在一个相当旧的linux机器上运行一次软件需要1-2个小时(20分钟通过WAN链路加载数据,其余时间用于处理)。任何给定代的大小都受到可用RAM的限制。我会一遍又一遍地运行它,稍微改变参数,寻找一个特别好的结果集。
总而言之,它避免了手动调整数十个欺诈指标的相对值所带来的一些失误,并且始终能够提出比我手动创建的更好的解决方案。AFAIK,它仍然在使用(大约3年后我写了它)。
其他回答
I used a simple genetic algorithm to optimize the signal to noise ratio of a wave that was represented as a binary string. By flipping the the bits certain ways over several million generations I was able to produce a transform that resulted in a higher signal to noise ratio of that wave. The algorithm could have also been "Simulated Annealing" but was not used in this case. At their core, genetic algorithms are simple, and this was about as simple of a use case that I have seen, so I didn't use a framework for generation creation and selection - only a random seed and the Signal-to-Noise Ratio function at hand.
我曾经尝试制作一个围棋电脑播放器,完全基于基因编程。每个程序都将被视为一系列动作的评估函数。即使是在一个相当小的3x4板上,制作的程序也不是很好。
我使用Perl,并自己编写了所有代码。我今天会做不同的事情。
在学校的一次研讨会上,我们开发了一个基于音乐模式生成音乐的应用程序。该程序是在Java中构建的,输出是一个midi文件与歌曲。我们使用不同的GA方法来生成音乐。我认为这个程序可以用来探索新的组合。
As part of my undergraduate CompSci degree, we were assigned the problem of finding optimal jvm flags for the Jikes research virtual machine. This was evaluated using the Dicappo benchmark suite which returns a time to the console. I wrote a distributed gentic alogirthm that switched these flags to improve the runtime of the benchmark suite, although it took days to run to compensate for hardware jitter affecting the results. The only problem was I didn't properly learn about the compiler theory (which was the intent of the assignment).
我本可以用现有的默认标志来播种初始种群,但有趣的是,算法发现了一个与O3优化级别非常相似的配置(但实际上在许多测试中更快)。
编辑:我还用Python写了我自己的遗传算法框架,只是使用popen命令来运行各种基准测试,尽管如果不是评估作业,我会看看pyEvolve。
我和一个同事正在研究一种解决方案,使用我们公司要求的各种标准将货物装载到卡车上。我一直在研究遗传算法的解决方案,而他正在使用具有激进修剪的分支和绑定。我们仍在实施这个解决方案的过程中,但到目前为止,我们已经取得了良好的结果。