遗传算法(GA)和遗传规划(GP)是一个有趣的研究领域。

我想知道你使用GA/GP解决的具体问题,以及如果你没有自己的库/框架,你使用了什么库/框架。

问题:

你用GA/GP解决过什么问题? 你使用了哪些库/框架?

我在寻找第一手的经验,所以请不要回答,除非你有。


当前回答

在学校的一次研讨会上,我们开发了一个基于音乐模式生成音乐的应用程序。该程序是在Java中构建的,输出是一个midi文件与歌曲。我们使用不同的GA方法来生成音乐。我认为这个程序可以用来探索新的组合。

其他回答

在大学期间,我们使用NERO(神经网络和遗传算法的结合)来教游戏中的机器人做出智能决策。非常酷。

我年轻时就尝试过GA。我用Python写了一个模拟器,工作原理如下。

这些基因编码了神经网络的权重。

神经网络的输入是检测触摸的“天线”。较高的数值表示非常接近,0表示不接触。

输出是两个“轮子”。如果两个轮子都向前,这个人也向前。如果轮子方向相反,他就会转向。输出的强度决定了车轮转动的速度。

生成了一个简单的迷宫。这真的很简单,甚至很愚蠢。屏幕下方是起点,上方是球门,中间有四面墙。每面墙都有一个随机的空间,所以总是有一条路。

一开始我只是随机挑选一些人(我认为他们是bug)。只要有一个人达到了目标,或者达到了时间限制,就会计算适合度。它与当时到目标的距离成反比。

然后我把它们配对,“培育”它们来创造下一代。被选择繁殖的概率与它的适应性成正比。有时,这意味着如果一个人具有非常高的相对适应性,就会与自己反复繁殖。

I thought they would develop a "left wall hugging" behavior, but they always seemed to follow something less optimal. In every experiment, the bugs converged to a spiral pattern. They would spiral outward until they touched a wall to the right. They'd follow that, then when they got to the gap, they'd spiral down (away from the gap) and around. They would make a 270 degree turn to the left, then usually enter the gap. This would get them through a majority of the walls, and often to the goal.

我添加的一个功能是在基因中放入一个颜色矢量来跟踪个体之间的相关性。几代之后,它们的颜色都是一样的,这说明我应该有更好的繁殖策略。

我试着让他们制定更好的策略。我把神经网络复杂化了——增加了记忆和其他东西。这没有用。我总是看到同样的策略。

我尝试了各种方法,比如建立单独的基因库,在100代之后才重新组合。但没有什么能促使他们采取更好的策略。也许这是不可能的。

另一个有趣的事情是绘制适应度随时间变化的图表。有明确的模式,比如最大适合度在上升之前会下降。我从未见过一本进化论的书谈到这种可能性。

我做了一些生活在这个小世界里的小动物。他们有一个神经网络大脑,从世界上接收一些输入,输出是其他行动的运动矢量。他们的大脑就是基因。

该项目从随机的动物群体开始,它们的大脑是随机的。输入和输出神经元是静止的,但中间的神经元不是。

环境中有食物和危险。食物可以增加能量,当你有足够的能量时,你就可以交配了。危险会降低能量,如果能量为0,他们就会死亡。

最终,这些生物进化到可以在世界各地移动,寻找食物和躲避危险。

于是我决定做一个小实验。我给这个生物的大脑一个输出神经元叫做“嘴”,一个输入神经元叫做“耳朵”。重新开始,惊讶地发现它们进化到最大化空间,每个生物都呆在各自的部分(食物是随机放置的)。他们学会了相互合作,不妨碍彼此。凡事总有例外。

然后我尝试了一些有趣的事情。死去的生物将成为食物。猜猜发生了什么事!进化出了两种生物,一种是成群攻击,另一种是高度回避。

那么这里的教训是什么呢?沟通意味着合作。一旦你引入了一个元素,即伤害他人意味着你获得了一些东西,那么合作就会被破坏。

我想知道这对自由市场和资本主义体系有何影响。我的意思是,如果企业可以伤害他们的竞争并侥幸逃脱,那么很明显,他们会尽其所能来伤害竞争。

编辑:

我用c++写的,没有使用框架。我自己写了神经网络和GA代码。埃里克,谢谢你这么说。人们通常不相信GA的力量(尽管其局限性很明显),直到他们玩过它。GA很简单,但不过分简单化。

对于怀疑者来说,神经网络已经被证明能够模拟任何功能,只要它们有不止一层。遗传算法是一种非常简单的方法,可以在解空间中找到局部和全局最小值。将遗传算法与神经网络结合起来,你就有了一个很好的方法来寻找函数,为一般问题找到近似解。因为我们使用的是神经网络,所以我们是针对某些输入优化函数,而不是像其他人使用遗传算法那样对某个函数的某些输入进行优化

下面是生存示例的演示代码:http://www.mempko.com/darcs/neural/demos/eaters/ 建立产品说明:

安装darcs, libboost, liballegro, gcc, cmake, make Darcs克隆——懒惰http://www.mempko.com/darcs/neural/ cd神经 cmake。 使 cd演示/吃 吃。/

There was an competition on codechef.com (great site by the way, monthly programming competitions) where one was supposed to solve an unsolveable sudoku (one should come as close as possible with as few wrong collumns/rows/etc as possible).What I would do, was to first generate a perfect sudoku and then override the fields, that have been given. From this pretty good basis on I used genetic programming to improve my solution.I couldn't think of a deterministic approach in this case, because the sudoku was 300x300 and search would've taken too long.

没有家庭作业。

1995年,我作为专业程序员的第一份工作是为标准普尔500指数期货编写一个基于遗传算法的自动交易系统。该应用程序是用Visual Basic 3 [!我不知道我当时是怎么做的,因为VB3甚至没有课程。

The application started with a population of randomly-generated fixed-length strings (the "gene" part), each of which corresponded to a specific shape in the minute-by-minute price data of the S&P500 futures, as well as a specific order (buy or sell) and stop-loss and stop-profit amounts. Each string (or "gene") had its profit performance evaluated by a run through 3 years of historical data; whenever the specified "shape" matched the historical data, I assumed the corresponding buy or sell order and evaluated the trade's result. I added the caveat that each gene started with a fixed amount of money and could thus potentially go broke and be removed from the gene pool entirely.

在对种群的每一次评估之后,幸存者被随机杂交(通过混合来自两个亲本的片段),一个基因被选择为亲本的可能性与它产生的利润成正比。我还添加了点突变的可能性,让事情变得有趣一点。经过几百代这样的基因,我最终得到了一个基因群,它可以把5000美元变成平均约10000美元,而且没有死亡/破碎的可能性(当然是在历史数据上)。

Unfortunately, I never got the chance to use this system live, since my boss lost close to $100,000 in less than 3 months trading the traditional way, and he lost his willingness to continue with the project. In retrospect, I think the system would have made huge profits - not because I was necessarily doing anything right, but because the population of genes that I produced happened to be biased towards buy orders (as opposed to sell orders) by about a 5:1 ratio. And as we know with our 20/20 hindsight, the market went up a bit after 1995.