遗传算法(GA)和遗传规划(GP)是一个有趣的研究领域。

我想知道你使用GA/GP解决的具体问题,以及如果你没有自己的库/框架,你使用了什么库/框架。

问题:

你用GA/GP解决过什么问题? 你使用了哪些库/框架?

我在寻找第一手的经验,所以请不要回答,除非你有。


当前回答

在我的婚宴上,我使用GA来优化座位分配。80位客人超过10张桌子。评估功能是基于让人们和他们的约会对象在一起,把有共同点的人放在一起,把观点完全相反的人放在不同的桌子上。

我运行了几次。每次我都有九张好桌子,还有一张都是怪球。最后,我妻子安排了座位。

我的旅行推销员优化器使用了一种新的染色体到行程的映射,这使得繁殖和变异染色体变得很简单,没有产生无效行程的风险。

更新:因为一些人问了…

以任意但一致的顺序(如按字母顺序排列)的客人(或城市)数组开始。称之为参考溶液。把客人的座位号看作是他/她的座位号。

我们没有尝试直接在染色体中编码这种顺序,而是编码将参考溶液转化为新溶液的指令。具体来说,我们将染色体视为数组中要交换的索引列表。为了解码染色体,我们从参考溶液开始,并应用由染色体指示的所有交换。交换数组中的两个条目总是会得到一个有效的解决方案:每个来宾(或城市)仍然只出现一次。

因此,染色体可以随机生成,突变,并与其他染色体交叉,总是会产生有效的解决方案。

其他回答

As part of my undergraduate CompSci degree, we were assigned the problem of finding optimal jvm flags for the Jikes research virtual machine. This was evaluated using the Dicappo benchmark suite which returns a time to the console. I wrote a distributed gentic alogirthm that switched these flags to improve the runtime of the benchmark suite, although it took days to run to compensate for hardware jitter affecting the results. The only problem was I didn't properly learn about the compiler theory (which was the intent of the assignment).

我本可以用现有的默认标志来播种初始种群,但有趣的是,算法发现了一个与O3优化级别非常相似的配置(但实际上在许多测试中更快)。

编辑:我还用Python写了我自己的遗传算法框架,只是使用popen命令来运行各种基准测试,尽管如果不是评估作业,我会看看pyEvolve。

我曾经尝试制作一个围棋电脑播放器,完全基于基因编程。每个程序都将被视为一系列动作的评估函数。即使是在一个相当小的3x4板上,制作的程序也不是很好。

我使用Perl,并自己编写了所有代码。我今天会做不同的事情。

我构建了一个简单的GA,用于在音乐播放时从频谱中提取有用的模式。输出用于驱动winamp插件中的图形效果。

输入:一些FFT帧(想象一个二维浮点数组) 输出:单个浮点值(输入的加权和),阈值为0.0或1.0 基因:输入权重 适应度函数:占空比、脉宽、BPM在合理范围内的组合。

我将一些ga调整到频谱的不同部分以及不同的BPM限制,所以它们不会趋向于收敛到相同的模式。来自每个种群的前4个的输出被发送到渲染引擎。

一个有趣的副作用是,整个人群的平均健康状况是音乐变化的一个很好的指标,尽管通常需要4-5秒才能发现。

2004年1月,飞利浦新显示技术公司(Philips New Display Technologies)联系了我,他们正在为有史以来第一款商业电子墨水——索尼Librie——制造电子产品。索尼Librie只在日本上市,比亚马逊Kindle和其他电子墨水在美国和欧洲上市早了好几年。

飞利浦的工程师遇到了一个大问题。在产品上市的几个月前,他们在换页面时仍然会出现重影。问题是产生静电场的200个驱动器。每个驱动器都有一个特定的电压,必须设置在0到1000mv之间。但如果你改变其中一个,就会改变一切。

因此,单独优化每个驱动器的电压是不可能的。可能的值组合的数量以数十亿计,一个特殊的相机大约需要1分钟来评估一个组合。工程师们尝试了许多标准的优化技术,但都没有达到预期的效果。

首席工程师联系了我,因为我之前已经向开源社区发布了一个遗传编程库。他问全科医生/全科医生是否会帮忙,以及我是否能参与其中。我这样做了,在大约一个月的时间里,我们一起工作,我在合成数据上编写和调整GA库,他则将其集成到他们的系统中。然后,有一个周末,他们让它和真人一起直播。

接下来的周一,我收到了他和他们的硬件设计师发来的溢美之词,说没人会相信GA发现的惊人结果。就是这样。同年晚些时候,该产品上市了。

我没有为此得到一分钱,但我有“吹嘘”的权利。他们从一开始就说他们已经超出预算了,所以我在开始工作之前就知道是什么交易。这对于气体的应用是一个很好的例子。:)

我是一个研究使用进化计算(EC)来自动修复现有程序中的错误的团队的成员。我们已经在现实世界的软件项目中成功地修复了一些真实的错误(参见本项目的主页)。

这种EC修复技术有两种应用。

The first (code and reproduction information available through the project page) evolves the abstract syntax trees parsed from existing C programs and is implemented in Ocaml using our own custom EC engine. The second (code and reproduction information available through the project page), my personal contribution to the project, evolves the x86 assembly or Java byte code compiled from programs written in a number of programming languages. This application is implemented in Clojure and also uses its own custom built EC engine.

进化计算的一个优点是技术的简单性,使得编写自己的自定义实现不太困难。有关遗传规划的一个很好的免费的介绍性文本,请参阅遗传规划的现场指南。