遗传算法(GA)和遗传规划(GP)是一个有趣的研究领域。
我想知道你使用GA/GP解决的具体问题,以及如果你没有自己的库/框架,你使用了什么库/框架。
问题:
你用GA/GP解决过什么问题? 你使用了哪些库/框架?
我在寻找第一手的经验,所以请不要回答,除非你有。
遗传算法(GA)和遗传规划(GP)是一个有趣的研究领域。
我想知道你使用GA/GP解决的具体问题,以及如果你没有自己的库/框架,你使用了什么库/框架。
问题:
你用GA/GP解决过什么问题? 你使用了哪些库/框架?
我在寻找第一手的经验,所以请不要回答,除非你有。
当前回答
我做了一些生活在这个小世界里的小动物。他们有一个神经网络大脑,从世界上接收一些输入,输出是其他行动的运动矢量。他们的大脑就是基因。
该项目从随机的动物群体开始,它们的大脑是随机的。输入和输出神经元是静止的,但中间的神经元不是。
环境中有食物和危险。食物可以增加能量,当你有足够的能量时,你就可以交配了。危险会降低能量,如果能量为0,他们就会死亡。
最终,这些生物进化到可以在世界各地移动,寻找食物和躲避危险。
于是我决定做一个小实验。我给这个生物的大脑一个输出神经元叫做“嘴”,一个输入神经元叫做“耳朵”。重新开始,惊讶地发现它们进化到最大化空间,每个生物都呆在各自的部分(食物是随机放置的)。他们学会了相互合作,不妨碍彼此。凡事总有例外。
然后我尝试了一些有趣的事情。死去的生物将成为食物。猜猜发生了什么事!进化出了两种生物,一种是成群攻击,另一种是高度回避。
那么这里的教训是什么呢?沟通意味着合作。一旦你引入了一个元素,即伤害他人意味着你获得了一些东西,那么合作就会被破坏。
我想知道这对自由市场和资本主义体系有何影响。我的意思是,如果企业可以伤害他们的竞争并侥幸逃脱,那么很明显,他们会尽其所能来伤害竞争。
编辑:
我用c++写的,没有使用框架。我自己写了神经网络和GA代码。埃里克,谢谢你这么说。人们通常不相信GA的力量(尽管其局限性很明显),直到他们玩过它。GA很简单,但不过分简单化。
对于怀疑者来说,神经网络已经被证明能够模拟任何功能,只要它们有不止一层。遗传算法是一种非常简单的方法,可以在解空间中找到局部和全局最小值。将遗传算法与神经网络结合起来,你就有了一个很好的方法来寻找函数,为一般问题找到近似解。因为我们使用的是神经网络,所以我们是针对某些输入优化函数,而不是像其他人使用遗传算法那样对某个函数的某些输入进行优化
下面是生存示例的演示代码:http://www.mempko.com/darcs/neural/demos/eaters/ 建立产品说明:
安装darcs, libboost, liballegro, gcc, cmake, make Darcs克隆——懒惰http://www.mempko.com/darcs/neural/ cd神经 cmake。 使 cd演示/吃 吃。/
其他回答
我不知道家庭作业算不算…
在我学习期间,我们推出了自己的程序来解决旅行推销员问题。
我们的想法是对几个标准进行比较(映射问题的难度,性能等),我们还使用了其他技术,如模拟退火。
它运行得很好,但我们花了一段时间来理解如何正确地进行“复制”阶段:将手头的问题建模成适合遗传编程的东西,这对我来说是最难的部分……
这是一门有趣的课程,因为我们也涉猎了神经网络之类的知识。
我想知道是否有人在“生产”代码中使用这种编程。
在学校的一次研讨会上,我们开发了一个基于音乐模式生成音乐的应用程序。该程序是在Java中构建的,输出是一个midi文件与歌曲。我们使用不同的GA方法来生成音乐。我认为这个程序可以用来探索新的组合。
在读完《盲人钟表匠》之后,我对道金斯所说的帕斯卡程序产生了兴趣,他开发了一个可以随着时间进化的生物模型。我对使用Swarm编写自己的程序很感兴趣。我没有画出他画的那些奇特的生物图形,但我的“染色体”控制着影响生物体生存能力的特征。他们生活在一个简单的世界里,可以与彼此和环境决一死战。
生物的生存或死亡部分取决于偶然性,但也取决于它们如何有效地适应当地环境,如何有效地消耗营养物质以及如何成功地繁殖。这很有趣,但也向我妻子证明了我是一个极客。
在我的婚宴上,我使用GA来优化座位分配。80位客人超过10张桌子。评估功能是基于让人们和他们的约会对象在一起,把有共同点的人放在一起,把观点完全相反的人放在不同的桌子上。
我运行了几次。每次我都有九张好桌子,还有一张都是怪球。最后,我妻子安排了座位。
我的旅行推销员优化器使用了一种新的染色体到行程的映射,这使得繁殖和变异染色体变得很简单,没有产生无效行程的风险。
更新:因为一些人问了…
以任意但一致的顺序(如按字母顺序排列)的客人(或城市)数组开始。称之为参考溶液。把客人的座位号看作是他/她的座位号。
我们没有尝试直接在染色体中编码这种顺序,而是编码将参考溶液转化为新溶液的指令。具体来说,我们将染色体视为数组中要交换的索引列表。为了解码染色体,我们从参考溶液开始,并应用由染色体指示的所有交换。交换数组中的两个条目总是会得到一个有效的解决方案:每个来宾(或城市)仍然只出现一次。
因此,染色体可以随机生成,突变,并与其他染色体交叉,总是会产生有效的解决方案。
除了一些常见的问题,如《旅行推销员》和Roger Alsing的《蒙娜丽莎》程序的变体,我还编写了一个进化数独求解器(这需要我自己更多的原创想法,而不仅仅是重新实现别人的想法)。解决数独游戏有更可靠的算法,但进化方法效果相当好。
在过去的几天里,在Reddit上看到这篇文章后,我一直在玩一个进化程序来寻找扑克的“冷牌”。目前还不太令人满意,但我想我可以改进。
我有自己的进化算法框架。