遗传算法(GA)和遗传规划(GP)是一个有趣的研究领域。
我想知道你使用GA/GP解决的具体问题,以及如果你没有自己的库/框架,你使用了什么库/框架。
问题:
你用GA/GP解决过什么问题? 你使用了哪些库/框架?
我在寻找第一手的经验,所以请不要回答,除非你有。
遗传算法(GA)和遗传规划(GP)是一个有趣的研究领域。
我想知道你使用GA/GP解决的具体问题,以及如果你没有自己的库/框架,你使用了什么库/框架。
问题:
你用GA/GP解决过什么问题? 你使用了哪些库/框架?
我在寻找第一手的经验,所以请不要回答,除非你有。
当前回答
这是一段时间以前的事了,但我滚动了一个GA来进化实际上是图像处理内核的东西,以从哈勃太空望远镜(HST)图像中去除宇宙射线痕迹。标准的方法是用哈勃望远镜进行多次曝光,只保留所有图像中相同的东西。由于HST时间是如此宝贵,我是一个天文学爱好者,最近参加了进化计算大会,我考虑使用GA来清理单次曝光。
这些个体以树的形式存在,以3x3像素的区域作为输入,执行一些计算,并决定是否以及如何修改中心像素。通过将输出图像与用传统方法(即叠加曝光)清理的图像进行比较来判断适合度。
这实际上是可行的,但还不足以让我们放弃原来的方法。如果我的论文没有时间限制,我可能已经扩展了算法可用的遗传部分。我很确定我可以大大提高它。
使用的库:如果我没记错的话,用于天文图像数据处理和I/O的IRAF和cfitsio。
其他回答
足球引爆。我建立了一个GA系统来预测每周澳式足球比赛的结果。
A few years ago I got bored of the standard work football pool, everybody was just going online and taking the picks from some pundit in the press. So, I figured it couldn't be too hard to beat a bunch of broadcast journalism majors, right? My first thought was to take the results from Massey Ratings and then reveal at the end of the season my strategy after winning fame and glory. However, for reasons I've never discovered Massey does not track AFL. The cynic in me believes it is because the outcome of each AFL game has basically become random chance, but my complaints of recent rule changes belong in a different forum.
该系统基本上考虑了进攻强度、防守强度、主场优势、每周的改进(或缺乏)以及这些方面的变化速度。这为每支球队在整个赛季中建立了一组多项式方程。可以计算给定日期的每场比赛的获胜者和分数。我们的目标是找到最接近过去所有游戏结果的系数集,并使用该集合来预测接下来几周的游戏。
在实践中,该系统将找到能够准确预测过去90%以上游戏结果的解决方案。然后,它会成功地为即将到来的一周(即不在训练集中的那一周)挑选大约60-80%的比赛。
结果是:略高于中游水平。没有巨额奖金也没有能打败维加斯的系统。不过很有趣。
我从零开始构建一切,没有使用任何框架。
在读完《盲人钟表匠》之后,我对道金斯所说的帕斯卡程序产生了兴趣,他开发了一个可以随着时间进化的生物模型。我对使用Swarm编写自己的程序很感兴趣。我没有画出他画的那些奇特的生物图形,但我的“染色体”控制着影响生物体生存能力的特征。他们生活在一个简单的世界里,可以与彼此和环境决一死战。
生物的生存或死亡部分取决于偶然性,但也取决于它们如何有效地适应当地环境,如何有效地消耗营养物质以及如何成功地繁殖。这很有趣,但也向我妻子证明了我是一个极客。
当你打算粉刷你的房子时,通常很难得到一个确切的颜色组合。通常,你脑海中有一些颜色,但它不是其中一种颜色,供应商向你展示。
昨天,我的GA研究员教授提到了一个发生在德国的真实故事(对不起,我没有更多的参考资料,是的,如果有人要求我可以找到它)。这个家伙(让我们称他为配色员)曾经挨家挨户地帮助人们找到确切的颜色代码(RGB),这将是客户心目中的衣柜。下面是他的做法:
The color guy used to carry with him a software program which used GA. He used to start with 4 different colors- each coded as a coded Chromosome (whose decoded value would be a RGB value). The consumer picks 1 of the 4 colors (Which is the closest to which he/she has in mind). The program would then assign the maximum fitness to that individual and move onto the next generation using mutation/crossover. The above steps would be repeated till the consumer had found the exact color and then color guy used to tell him the RGB combination!
通过将最大适应度分配给接近消费者想法的颜色,配色员的程序增加了收敛到消费者想法的颜色的机会。我发现它很有趣!
现在我已经得到了一个-1,如果你计划更多的-1,请说明这样做的原因!
在大学期间,我们使用NERO(神经网络和遗传算法的结合)来教游戏中的机器人做出智能决策。非常酷。
我几周前做了这个有趣的小玩意。它生成有趣的互联网图像使用GA。有点傻,但很好笑。
http://www.twitterandom.info/GAFunny/
对此有一些见解。它是一些mysql表。一个用于图像列表及其评分(即适合度),另一个用于子图像及其在页面上的位置。
子图像可以有几个细节,但不是全部实现:+大小,倾斜,旋转,+位置,+image_url。
当人们投票决定这张照片有多有趣时,它或多或少会流传到下一代。如果它存活下来,它会产生5-10个带有轻微突变的后代。目前还没有交叉。