遗传算法(GA)和遗传规划(GP)是一个有趣的研究领域。
我想知道你使用GA/GP解决的具体问题,以及如果你没有自己的库/框架,你使用了什么库/框架。
问题:
你用GA/GP解决过什么问题? 你使用了哪些库/框架?
我在寻找第一手的经验,所以请不要回答,除非你有。
遗传算法(GA)和遗传规划(GP)是一个有趣的研究领域。
我想知道你使用GA/GP解决的具体问题,以及如果你没有自己的库/框架,你使用了什么库/框架。
问题:
你用GA/GP解决过什么问题? 你使用了哪些库/框架?
我在寻找第一手的经验,所以请不要回答,除非你有。
当前回答
我开发了一个基于多线程摆动的模拟机器人导航通过一组随机网格地形的食物源和矿山,并开发了一个基于遗传算法的策略,探索机器人行为的优化和机器人染色体的适者生存基因。这是使用每个迭代周期的图表和映射来完成的。
从那以后,我发展了更多的游戏行为。我最近为自己构建的一个示例应用程序是一个遗传算法,用于解决在英国寻找路线时的旅行销售人员问题,考虑到起始和目标状态,以及一个/多个连接点,延误,取消,建筑工程,高峰时间,公共罢工,考虑最快和最便宜的路线。然后为某一天的路线提供一个平衡的建议。
一般来说,我的策略是使用基于POJO的基因表示,然后为选择、突变、交叉策略和标准点应用特定的接口实现。我的适应度函数就会变得非常复杂,这是基于我需要作为启发式测量应用的策略和标准。
我还研究了将遗传算法应用于代码中的自动化测试,使用系统突变周期,其中算法理解逻辑,并尝试确定带有代码修复建议的错误报告。基本上,这是一种优化我的代码并提供改进建议的方法,以及一种自动发现新编程代码的方法。我还尝试将遗传算法应用于音乐制作和其他应用。
一般来说,我发现进化策略就像大多数元启发式/全局优化策略一样,一开始学习很慢,但随着解决方案越来越接近目标状态,只要你的适应度函数和启发式很好地对齐,在你的搜索空间内产生收敛,它们就会开始学习。
其他回答
我和一个同事正在研究一种解决方案,使用我们公司要求的各种标准将货物装载到卡车上。我一直在研究遗传算法的解决方案,而他正在使用具有激进修剪的分支和绑定。我们仍在实施这个解决方案的过程中,但到目前为止,我们已经取得了良好的结果。
在学校的一次研讨会上,我们开发了一个基于音乐模式生成音乐的应用程序。该程序是在Java中构建的,输出是一个midi文件与歌曲。我们使用不同的GA方法来生成音乐。我认为这个程序可以用来探索新的组合。
我年轻时就尝试过GA。我用Python写了一个模拟器,工作原理如下。
这些基因编码了神经网络的权重。
神经网络的输入是检测触摸的“天线”。较高的数值表示非常接近,0表示不接触。
输出是两个“轮子”。如果两个轮子都向前,这个人也向前。如果轮子方向相反,他就会转向。输出的强度决定了车轮转动的速度。
生成了一个简单的迷宫。这真的很简单,甚至很愚蠢。屏幕下方是起点,上方是球门,中间有四面墙。每面墙都有一个随机的空间,所以总是有一条路。
一开始我只是随机挑选一些人(我认为他们是bug)。只要有一个人达到了目标,或者达到了时间限制,就会计算适合度。它与当时到目标的距离成反比。
然后我把它们配对,“培育”它们来创造下一代。被选择繁殖的概率与它的适应性成正比。有时,这意味着如果一个人具有非常高的相对适应性,就会与自己反复繁殖。
I thought they would develop a "left wall hugging" behavior, but they always seemed to follow something less optimal. In every experiment, the bugs converged to a spiral pattern. They would spiral outward until they touched a wall to the right. They'd follow that, then when they got to the gap, they'd spiral down (away from the gap) and around. They would make a 270 degree turn to the left, then usually enter the gap. This would get them through a majority of the walls, and often to the goal.
我添加的一个功能是在基因中放入一个颜色矢量来跟踪个体之间的相关性。几代之后,它们的颜色都是一样的,这说明我应该有更好的繁殖策略。
我试着让他们制定更好的策略。我把神经网络复杂化了——增加了记忆和其他东西。这没有用。我总是看到同样的策略。
我尝试了各种方法,比如建立单独的基因库,在100代之后才重新组合。但没有什么能促使他们采取更好的策略。也许这是不可能的。
另一个有趣的事情是绘制适应度随时间变化的图表。有明确的模式,比如最大适合度在上升之前会下降。我从未见过一本进化论的书谈到这种可能性。
我使用遗传算法(以及一些相关技术)来确定风险管理系统的最佳设置,该系统试图阻止淘金者使用偷来的信用卡来购买mmo游戏。该系统将接收数千笔具有“已知”值的交易(欺诈与否),并找出最佳设置组合,以正确识别欺诈交易,而不会产生太多误报。
We had data on several dozen (boolean) characteristics of a transaction, each of which was given a value and totalled up. If the total was higher than a threshold, the transaction was fraud. The GA would create a large number of random sets of values, evaluate them against a corpus of known data, select the ones that scored the best (on both fraud detection and limiting the number of false positives), then cross breed the best few from each generation to produce a new generation of candidates. After a certain number of generations the best scoring set of values was deemed the winner.
创建用于测试的已知数据语料库是该系统的阿喀琉斯之踵。如果你等待退款,你在试图回应欺诈者时就会落后几个月,所以有人必须手动审查大量交易,以建立数据库,而不必等待太长时间。
这最终确定了绝大多数的欺诈行为,但在最容易欺诈的项目上,这一比例无法低于1%(考虑到90%的交易可能是欺诈,这已经相当不错了)。
我用perl完成了所有这些。在一个相当旧的linux机器上运行一次软件需要1-2个小时(20分钟通过WAN链路加载数据,其余时间用于处理)。任何给定代的大小都受到可用RAM的限制。我会一遍又一遍地运行它,稍微改变参数,寻找一个特别好的结果集。
总而言之,它避免了手动调整数十个欺诈指标的相对值所带来的一些失误,并且始终能够提出比我手动创建的更好的解决方案。AFAIK,它仍然在使用(大约3年后我写了它)。
我是一个研究使用进化计算(EC)来自动修复现有程序中的错误的团队的成员。我们已经在现实世界的软件项目中成功地修复了一些真实的错误(参见本项目的主页)。
这种EC修复技术有两种应用。
The first (code and reproduction information available through the project page) evolves the abstract syntax trees parsed from existing C programs and is implemented in Ocaml using our own custom EC engine. The second (code and reproduction information available through the project page), my personal contribution to the project, evolves the x86 assembly or Java byte code compiled from programs written in a number of programming languages. This application is implemented in Clojure and also uses its own custom built EC engine.
进化计算的一个优点是技术的简单性,使得编写自己的自定义实现不太困难。有关遗传规划的一个很好的免费的介绍性文本,请参阅遗传规划的现场指南。