如何改变这个输入(顺序:时间,输入,输出,文件):
Time In Out Files
1 2 3 4
2 3 4 5
到这个输出(序列:时间,输出,输入,文件)?
Time Out In Files
1 3 2 4
2 4 3 5
这是虚拟R数据:
table <- data.frame(Time=c(1,2), In=c(2,3), Out=c(3,4), Files=c(4,5))
table
## Time In Out Files
##1 1 2 3 4
##2 2 3 4 5
Dplyr有一个函数,允许您将特定列移动到其他列的前面或后面。当您使用大数据框架时,这是一个关键的工具(如果是4列,使用前面提到的select更快)。
https://dplyr.tidyverse.org/reference/relocate.html
在你的情况下,它将是:
df <- df %>% relocate(Out, .after = In)
简单而优雅。它还允许你一起移动几列,并将其移动到开始或结束:
df <- df %>% relocate(any_of(c('ColX', 'ColY', 'ColZ')), .after = last_col())
再次强调:当你使用大数据框架时,超级强大:)
Dplyr 1.0.0版本包含了relocate()函数来轻松地重新排序列:
dat <- data.frame(Time=c(1,2), In=c(2,3), Out=c(3,4), Files=c(4,5))
library(dplyr) # from version 1.0.0 only
dat %>%
relocate(Out, .before = In)
or
dat %>%
relocate(Out, .after = Time)
Dplyr有一个函数,允许您将特定列移动到其他列的前面或后面。当您使用大数据框架时,这是一个关键的工具(如果是4列,使用前面提到的select更快)。
https://dplyr.tidyverse.org/reference/relocate.html
在你的情况下,它将是:
df <- df %>% relocate(Out, .after = In)
简单而优雅。它还允许你一起移动几列,并将其移动到开始或结束:
df <- df %>% relocate(any_of(c('ColX', 'ColY', 'ColZ')), .after = last_col())
再次强调:当你使用大数据框架时,超级强大:)
你也可以使用子集函数:
data <- subset(data, select=c(3,2,1))
您最好像在其他答案中那样使用[]操作符,但是知道您可以在单个命令中执行子集和列重新排序操作可能会很有用。
更新:
你也可以使用dplyr包中的select函数:
data = data %>% select(Time, out, In, Files)
我不确定效率如何,但由于dplyr的语法,这个解决方案应该更灵活,特别是如果您有很多列。例如,下面将以相反的顺序重新排列mtcars数据集的列:
mtcars %>% select(carb:mpg)
下面只会对一些列进行重新排序,而丢弃其他列:
mtcars %>% select(mpg:disp, hp, wt, gear:qsec, starts_with('carb'))
阅读更多关于dplyr的选择语法。