如何改变这个输入(顺序:时间,输入,输出,文件):

Time   In    Out  Files
1      2     3    4
2      3     4    5

到这个输出(序列:时间,输出,输入,文件)?

Time   Out   In  Files
1      3     2    4
2      4     3    5

这是虚拟R数据:

table <- data.frame(Time=c(1,2), In=c(2,3), Out=c(3,4), Files=c(4,5))
table
##  Time In Out Files
##1    1  2   3     4
##2    2  3   4     5

当前回答

你也可以使用子集函数:

data <- subset(data, select=c(3,2,1))

您最好像在其他答案中那样使用[]操作符,但是知道您可以在单个命令中执行子集和列重新排序操作可能会很有用。

更新:

你也可以使用dplyr包中的select函数:

data = data %>% select(Time, out, In, Files)

我不确定效率如何,但由于dplyr的语法,这个解决方案应该更灵活,特别是如果您有很多列。例如,下面将以相反的顺序重新排列mtcars数据集的列:

mtcars %>% select(carb:mpg)

下面只会对一些列进行重新排序,而丢弃其他列:

mtcars %>% select(mpg:disp, hp, wt, gear:qsec, starts_with('carb'))

阅读更多关于dplyr的选择语法。

其他回答

也许这是一个巧合,您想要的列顺序恰好有按字母降序排列的列名。既然是这种情况,你可以这样做:

df<-df[,order(colnames(df),decreasing=TRUE)]

当我有很多列的大文件时,我就会使用这种方法。

一个dplyr解决方案(tidyverse包集的一部分)是使用select:

select(table, "Time", "Out", "In", "Files") 

# or

select(table, Time, Out, In, Files)

你也可以使用子集函数:

data <- subset(data, select=c(3,2,1))

您最好像在其他答案中那样使用[]操作符,但是知道您可以在单个命令中执行子集和列重新排序操作可能会很有用。

更新:

你也可以使用dplyr包中的select函数:

data = data %>% select(Time, out, In, Files)

我不确定效率如何,但由于dplyr的语法,这个解决方案应该更灵活,特别是如果您有很多列。例如,下面将以相反的顺序重新排列mtcars数据集的列:

mtcars %>% select(carb:mpg)

下面只会对一些列进行重新排序,而丢弃其他列:

mtcars %>% select(mpg:disp, hp, wt, gear:qsec, starts_with('carb'))

阅读更多关于dplyr的选择语法。

data.table::setcolorder(table, c("Out", "in", "files"))

正如这篇评论中提到的,在data.frame中重新排序列的标准建议通常很麻烦且容易出错,特别是如果你有很多列的话。

这个函数允许按位置重新排列列:指定一个变量名和期望的位置,而不用担心其他列。

##arrange df vars by position
##'vars' must be a named vector, e.g. c("var.name"=1)
arrange.vars <- function(data, vars){
    ##stop if not a data.frame (but should work for matrices as well)
    stopifnot(is.data.frame(data))

    ##sort out inputs
    data.nms <- names(data)
    var.nr <- length(data.nms)
    var.nms <- names(vars)
    var.pos <- vars
    ##sanity checks
    stopifnot( !any(duplicated(var.nms)), 
               !any(duplicated(var.pos)) )
    stopifnot( is.character(var.nms), 
               is.numeric(var.pos) )
    stopifnot( all(var.nms %in% data.nms) )
    stopifnot( all(var.pos > 0), 
               all(var.pos <= var.nr) )

    ##prepare output
    out.vec <- character(var.nr)
    out.vec[var.pos] <- var.nms
    out.vec[-var.pos] <- data.nms[ !(data.nms %in% var.nms) ]
    stopifnot( length(out.vec)==var.nr )

    ##re-arrange vars by position
    data <- data[ , out.vec]
    return(data)
}

现在OP的请求变得如此简单:

table <- data.frame(Time=c(1,2), In=c(2,3), Out=c(3,4), Files=c(4,5))
table
##  Time In Out Files
##1    1  2   3     4
##2    2  3   4     5

arrange.vars(table, c("Out"=2))
##  Time Out In Files
##1    1   3  2     4
##2    2   4  3     5

要额外交换时间和文件列,您可以这样做:

arrange.vars(table, c("Out"=2, "Files"=1, "Time"=4))
##  Files Out In Time
##1     4   3  2    1
##2     5   4  3    2