是否有可能得到一个1-100之间的随机数,并将结果主要保持在40-60的范围内?我的意思是,它很少会超出这个范围,但我希望它主要在这个范围内……这是可能的JavaScript/jQuery?
现在我只使用基本的Math.random() * 100 + 1。
是否有可能得到一个1-100之间的随机数,并将结果主要保持在40-60的范围内?我的意思是,它很少会超出这个范围,但我希望它主要在这个范围内……这是可能的JavaScript/jQuery?
现在我只使用基本的Math.random() * 100 + 1。
当前回答
生成这样的随机数有很多不同的方法。一种方法是计算多个均匀随机数的和。你和多少个随机数以及它们的范围将决定最终分布的样子。
你加起来的数字越多,它就越向中心倾斜。在你的问题中已经提出了使用1个随机数的和,但正如你注意到的那样,它并不偏向于范围的中心。其他答案建议使用2个随机数的和或3个随机数的和。
通过取更多随机数的和,你可以得到更偏向范围中心的结果。在极端情况下,你可以取99个随机数字的和,每个数字都是0或1。这是一个二项分布。(二项分布在某种意义上可以被看作是正态分布的离散版本)。理论上,这仍然可以覆盖整个范围,但它有很大的偏向中心,你永远不会期望看到它到达端点。
这种方法意味着你可以调整你想要的偏差。
其他回答
你有一些很好的答案,给出了具体的解决方案;让我给你描述一下通解。问题是:
我有一个在0到1之间或多或少均匀分布的随机数源。 我希望产生一个遵循不同分布的随机数序列。
这个问题的一般解决方案是计算出所需分布的分位数函数,然后将分位数函数应用于均匀源的输出。
分位数函数是你想要的分布函数的积分的倒数。分布函数是这样的函数,曲线的一部分下面的面积等于随机选择的项目将在该部分的概率。
我在这里给出一个如何做到这一点的例子:
http://ericlippert.com/2012/02/21/generating-random-non-uniform-data/
其中的代码是c#编写的,但原则适用于任何语言;它应该很容易适应JavaScript的解决方案。
这是3/4的加权解,40-60和1/4在这个范围之外。
function weighted() { var w = 4; // number 1 to w var r = Math.floor(Math.random() * w) + 1; if (r === 1) { // 1/w goes to outside 40-60 var n = Math.floor(Math.random() * 80) + 1; if (n >= 40 && n <= 60) n += 40; return n } // w-1/w goes to 40-60 range. return Math.floor(Math.random() * 21) + 40; } function test() { var counts = []; for (var i = 0; i < 2000; i++) { var n = weighted(); if (!counts[n]) counts[n] = 0; counts[n] ++; } var output = document.getElementById('output'); var o = ""; for (var i = 1; i <= 100; i++) { o += i + " - " + (counts[i] | 0) + "\n"; } output.innerHTML = o; } test(); <pre id="output"></pre>
var randNum;
// generate random number from 1-5
var freq = Math.floor(Math.random() * (6 - 1) + 1);
// focus on 40-60 if the number is odd (1,3, or 5)
// this should happen %60 of the time
if (freq % 2){
randNum = Math.floor(Math.random() * (60 - 40) + 40);
}
else {
randNum = Math.floor(Math.random() * (100 - 1) + 1);
}
生成这样的随机数有很多不同的方法。一种方法是计算多个均匀随机数的和。你和多少个随机数以及它们的范围将决定最终分布的样子。
你加起来的数字越多,它就越向中心倾斜。在你的问题中已经提出了使用1个随机数的和,但正如你注意到的那样,它并不偏向于范围的中心。其他答案建议使用2个随机数的和或3个随机数的和。
通过取更多随机数的和,你可以得到更偏向范围中心的结果。在极端情况下,你可以取99个随机数字的和,每个数字都是0或1。这是一个二项分布。(二项分布在某种意义上可以被看作是正态分布的离散版本)。理论上,这仍然可以覆盖整个范围,但它有很大的偏向中心,你永远不会期望看到它到达端点。
这种方法意味着你可以调整你想要的偏差。
如果你可以使用高斯函数,那就使用它。这个函数返回平均值为0和sigma 1的正态数。
95%的数字在平均+/- 2*sigma范围内。平均值= 50,sigma = 5
randomNumber = 50 + 5*gaussian()