我们正在编译一个嵌入式C++应用程序,它部署在电离辐射轰击的环境中的屏蔽设备中。我们正在为ARM使用GCC和交叉编译。在部署时,我们的应用程序会生成一些错误的数据,并且比我们希望的更频繁地崩溃。硬件是为这个环境而设计的,我们的应用程序已经在这个平台上运行了几年。

我们是否可以对代码进行更改,或对编译时进行改进,以识别/纠正由单个事件扰乱导致的软错误和内存损坏?是否有其他开发人员成功地减少了软错误对长时间运行的应用程序的有害影响?


当前回答

也许了解一下硬件“为这种环境而设计”意味着什么会有所帮助。它如何纠正和/或指示SEU错误的存在?

在一个与空间探索相关的项目中,我们有一个自定义MCU,它会在SEU错误时引发异常/中断,但会有一些延迟,即在导致SEU异常的insn之后可能会通过一些循环/执行一些指令。

数据缓存尤其容易受到攻击,因此处理程序会使有问题的缓存行无效并重新启动程序。只是,由于异常的不精确性,以引发异常的insn为首的insn序列可能无法重新启动。

我们确定了危险的(不可重启的)序列(如lw$3,0x0($2),然后是insn,它修改了$2,数据不依赖于$3),我对GCC进行了修改,所以这样的序列不会发生(例如,作为最后的手段,用nop分隔两个insn)。

只是需要考虑的事情。。。

其他回答

您可能还对有关算法容错的丰富文献感兴趣。这包括旧的赋值:编写一个排序,当恒定数量的比较将失败时(或者,更糟糕的版本,当失败的比较的渐近数量为n次比较的log(n)时),正确地对其输入进行排序。

开始阅读黄和亚伯拉罕1984年的论文《矩阵运算的基于算法的容错》。他们的想法隐约类似于同态加密计算(但实际上并不相同,因为他们正在尝试在操作级别进行错误检测/纠正)。

该论文的一个较新的后代是Bosilca、Delmas、Dongarra和Langou的“基于算法的容错应用于高性能计算”。

NASA有一篇关于防辐射软件的论文。它描述了三个主要任务:

定期监控内存中的错误,然后清除这些错误,稳健的错误恢复机制,以及如果某些东西不再工作,重新配置的能力。

请注意,内存扫描速率应该足够频繁,很少发生多位错误,因为大多数ECC内存可以从单位错误而不是多位错误中恢复。

稳健的错误恢复包括控制流传输(通常在错误发生之前的某个点重新启动流程)、资源释放和数据恢复。

他们对数据恢复的主要建议是,通过将中间数据视为临时数据,避免数据恢复的需要,以便在错误发生之前重新启动也能将数据回滚到可靠状态。这听起来类似于数据库中的“事务”概念。

他们讨论了特别适用于面向对象语言(如C++)的技术。例如

用于连续内存对象的基于软件的ECC契约编程:验证先决条件和后决条件,然后检查对象以验证其是否仍处于有效状态。

而且,正是如此,美国宇航局(NASA)已将C++用于火星探测器等重大项目。

C++类抽象和封装支持多个项目和开发人员之间的快速开发和测试。

他们避免了某些可能产生问题的C++特性:

例外情况模板Iostream(无控制台)多重继承运算符重载(new和delete除外)动态分配(使用专用内存池并放置新的以避免系统堆损坏的可能性)。

如果你的硬件出现故障,你可以使用机械存储来恢复它。如果你的代码库很小,并且有一些物理空间,那么你可以使用一个机械数据存储。

材料表面不会受到辐射的影响。将有多个档位。机械读卡器将在所有齿轮上运行,并且可以灵活地上下移动。向下表示为0,向上表示为1。从0和1可以生成代码库。

能帮助你的是看门狗。20世纪80年代,看门狗被广泛用于工业计算。当时,硬件故障更为常见——另一个答案也提到了那个时期。

看门狗是一种组合的硬件/软件功能。硬件是一个简单的计数器,从一个数字(比如1023)向下计数到零。可以使用TTL或其他逻辑。

软件的设计使得一个例程可以监控所有基本系统的正确运行。如果此例程正确完成=发现计算机运行正常,则将计数器设置回1023。

总体设计使得在正常情况下,软件可以防止硬件计数器达到零。如果计数器达到零,计数器的硬件将执行其唯一的任务并重置整个系统。从计数器的角度来看,零等于1024,计数器继续向下计数。

该看门狗可确保所连接的计算机在多次故障情况下重新启动。我必须承认,我不熟悉能够在当今计算机上执行这种功能的硬件。与外部硬件的接口现在比过去复杂得多。

看门狗的一个固有缺点是,从出现故障到看门狗计数器达到零+重新启动时间,系统就不可用。虽然该时间通常比任何外部或人为干预短得多,但在该时间段内,受支持的设备需要能够在没有计算机控制的情况下继续工作。

这个答案假设你关心的是一个工作正常的系统,而不是一个成本最低或速度快的系统;大多数玩放射性物品的人都看重正确性/安全性而不是速度/成本

有几个人建议您可以进行硬件更改(很好,答案中已经有很多好东西,我不打算重复所有内容),还有一些人建议冗余(原则上很好),但我认为没有人建议冗余在实践中如何工作。你怎么会失败?你怎么知道什么时候出了问题?许多技术都是在一切都会成功的基础上工作的,因此失败是一件棘手的事情。然而,一些为规模而设计的分布式计算技术预计会出现故障(毕竟,规模足够大,多个节点中的一个节点的故障是不可避免的,单个节点的平均无故障时间为MTBF);你可以利用它来保护你的环境。

以下是一些想法:

确保整个硬件复制n次(其中n大于2,最好是奇数),并且每个硬件元素可以与其他硬件元素通信。以太网是实现这一点的一种明显方式,但还有许多其他更简单的路由可以提供更好的保护(例如CAN)。尽量减少常见组件(甚至电源)。例如,这可能意味着在多个地方对ADC输入进行采样。确保应用程序状态在一个地方,例如在有限状态机中。这可以完全基于RAM,但并不排除稳定的存储。因此,它将存储在几个地方。对状态变化采用仲裁协议。例如,请参见RAFT。当您在C++中工作时,有一些众所周知的库可以实现这一点。只有当大多数节点同意时,才能对FSM进行更改。为协议堆栈和仲裁协议使用一个已知的好库,而不是自己滚动一个,否则当仲裁协议挂断时,您在冗余方面的所有好工作都将被浪费。确保您对FSM进行校验和(例如,CRC/SHA),并将CRC/CHA存储在FSM本身中(以及在消息中传输,并对消息本身进行校验和)。让节点定期对照这些校验和、传入消息的校验和检查其FSM,并检查其校验和是否与仲裁的校验和匹配。在系统中构建尽可能多的其他内部检查,使检测到自身故障的节点重新启动(这比在有足够节点的情况下继续半工作要好)。尝试让他们在重新启动过程中彻底退出仲裁,以防他们再次出现。在重新启动时,让他们检查软件映像(以及他们加载的任何其他内容),并在重新引入仲裁之前进行完整的RAM测试。使用硬件支持您,但要小心操作。例如,您可以获取ECC RAM,并定期对其进行读/写,以纠正ECC错误(如果错误无法纠正,则会死机)。然而(从内存来看)静态RAM比DRAM更能耐受电离辐射,因此最好使用静态DRAM。请参见“我不会做的事情”下的第一点。

假设您在一天内任何给定节点都有1%的失败机会,假设您可以使失败完全独立。如果有5个节点,一天内需要3个节点失败,这是0.00001%的概率。有了更多,你就明白了。

我不会做的事情:

低估了一开始没有问题的价值。除非重量是一个问题,否则你的设备周围的一大块金属将是一个比程序员团队所能想到的更便宜、更可靠的解决方案。同样,EMI输入的光学耦合也是一个问题,等等。无论怎样,在采购部件时,都要尽量选择那些抗电离辐射性能最好的部件。使用自己的算法。人们以前也做过这种事。利用他们的工作。容错和分布式算法很难。尽可能利用他人的工作。使用复杂的编译器设置,天真地希望您检测到更多失败。如果你运气好,你可能会发现更多的失败。更有可能的是,您将在编译器中使用一个测试较少的代码路径,特别是如果您自己滚动的话。使用在您的环境中未经测试的技术。大多数编写高可用性软件的人必须模拟故障模式,以检查其HA是否正常工作,并因此错过了许多故障模式。你处于“幸运”的境地,经常按需出现故障。因此,测试每种技术,并确保其应用程序实际提高MTBF的数量超过引入它的复杂性(复杂性带来了bug)。特别是将此应用于我的建议重新仲裁算法等。