比较两个双精度浮点数或两个浮点数最有效的方法是什么?
简单地这样做是不正确的:
bool CompareDoubles1 (double A, double B)
{
return A == B;
}
比如:
bool CompareDoubles2 (double A, double B)
{
diff = A - B;
return (diff < EPSILON) && (-diff < EPSILON);
}
似乎是浪费加工。
有人知道更聪明的浮点比较器吗?
不幸的是,即使您的“浪费”代码也是不正确的。EPSILON是可以添加到1.0并更改其值的最小值。值1.0非常重要——更大的数字在添加到EPSILON时不会改变。现在,您可以将这个值缩放到您正在比较的数字,以判断它们是否不同。比较两个双精度对象的正确表达式是:
if (fabs(a - b) <= DBL_EPSILON * fmax(fabs(a), fabs(b)))
{
// ...
}
这是最小值。一般来说,你会想要在计算中考虑噪声,并忽略一些最不重要的位,所以更现实的比较应该是这样的:
if (fabs(a - b) <= 16 * DBL_EPSILON * fmax(fabs(a), fabs(b)))
{
// ...
}
如果比较性能对您非常重要,并且您知道值的范围,那么您应该使用定点数字。
我的课程是基于之前发布的答案。非常类似于谷歌的代码,但我使用了一个偏差,将所有NaN值推到0xFF000000以上。这样可以更快地检查NaN。
这段代码是为了演示概念,而不是通用的解决方案。谷歌的代码已经展示了如何计算所有平台特定的值,我不想复制所有这些。我对这段代码做了有限的测试。
typedef unsigned int U32;
// Float Memory Bias (unsigned)
// ----- ------ ---------------
// NaN 0xFFFFFFFF 0xFF800001
// NaN 0xFF800001 0xFFFFFFFF
// -Infinity 0xFF800000 0x00000000 ---
// -3.40282e+038 0xFF7FFFFF 0x00000001 |
// -1.40130e-045 0x80000001 0x7F7FFFFF |
// -0.0 0x80000000 0x7F800000 |--- Valid <= 0xFF000000.
// 0.0 0x00000000 0x7F800000 | NaN > 0xFF000000
// 1.40130e-045 0x00000001 0x7F800001 |
// 3.40282e+038 0x7F7FFFFF 0xFEFFFFFF |
// Infinity 0x7F800000 0xFF000000 ---
// NaN 0x7F800001 0xFF000001
// NaN 0x7FFFFFFF 0xFF7FFFFF
//
// Either value of NaN returns false.
// -Infinity and +Infinity are not "close".
// -0 and +0 are equal.
//
class CompareFloat{
public:
union{
float m_f32;
U32 m_u32;
};
static bool CompareFloat::IsClose( float A, float B, U32 unitsDelta = 4 )
{
U32 a = CompareFloat::GetBiased( A );
U32 b = CompareFloat::GetBiased( B );
if ( (a > 0xFF000000) || (b > 0xFF000000) )
{
return( false );
}
return( (static_cast<U32>(abs( a - b ))) < unitsDelta );
}
protected:
static U32 CompareFloat::GetBiased( float f )
{
U32 r = ((CompareFloat*)&f)->m_u32;
if ( r & 0x80000000 )
{
return( ~r - 0x007FFFFF );
}
return( r + 0x7F800000 );
}
};