比较两个双精度浮点数或两个浮点数最有效的方法是什么?

简单地这样做是不正确的:

bool CompareDoubles1 (double A, double B)
{
   return A == B;
}

比如:

bool CompareDoubles2 (double A, double B) 
{
   diff = A - B;
   return (diff < EPSILON) && (-diff < EPSILON);
}

似乎是浪费加工。

有人知道更聪明的浮点比较器吗?


当前回答

这是另一个解:

#include <cmath>
#include <limits>

auto Compare = [](float a, float b, float epsilon = std::numeric_limits<float>::epsilon()){ return (std::fabs(a - b) <= epsilon); };

其他回答

就数量的规模而言:

如果在某种物理意义上,ε是量的大小(即相对值)的一小部分,而A和B类型在同一意义上具有可比性,那么我认为,下面的观点是相当正确的:

#include <limits>
#include <iomanip>
#include <iostream>

#include <cmath>
#include <cstdlib>
#include <cassert>

template< typename A, typename B >
inline
bool close_enough(A const & a, B const & b,
                  typename std::common_type< A, B >::type const & epsilon)
{
    using std::isless;
    assert(isless(0, epsilon)); // epsilon is a part of the whole quantity
    assert(isless(epsilon, 1));
    using std::abs;
    auto const delta = abs(a - b);
    auto const x = abs(a);
    auto const y = abs(b);
    // comparable generally and |a - b| < eps * (|a| + |b|) / 2
    return isless(epsilon * y, x) && isless(epsilon * x, y) && isless((delta + delta) / (x + y), epsilon);
}

int main()
{
    std::cout << std::boolalpha << close_enough(0.9, 1.0, 0.1) << std::endl;
    std::cout << std::boolalpha << close_enough(1.0, 1.1, 0.1) << std::endl;
    std::cout << std::boolalpha << close_enough(1.1,    1.2,    0.01) << std::endl;
    std::cout << std::boolalpha << close_enough(1.0001, 1.0002, 0.01) << std::endl;
    std::cout << std::boolalpha << close_enough(1.0, 0.01, 0.1) << std::endl;
    return EXIT_SUCCESS;
}

比较浮点数取决于上下文。因为即使改变操作的顺序也会产生不同的结果,所以知道你希望这些数字有多“相等”是很重要的。

在研究浮点数比较时,比较Bruce Dawson编写的浮点数是一个很好的开始。

以下定义来自Knuth的《The art of computer programming》:

bool approximatelyEqual(float a, float b, float epsilon)
{
    return fabs(a - b) <= ( (fabs(a) < fabs(b) ? fabs(b) : fabs(a)) * epsilon);
}

bool essentiallyEqual(float a, float b, float epsilon)
{
    return fabs(a - b) <= ( (fabs(a) > fabs(b) ? fabs(b) : fabs(a)) * epsilon);
}

bool definitelyGreaterThan(float a, float b, float epsilon)
{
    return (a - b) > ( (fabs(a) < fabs(b) ? fabs(b) : fabs(a)) * epsilon);
}

bool definitelyLessThan(float a, float b, float epsilon)
{
    return (b - a) > ( (fabs(a) < fabs(b) ? fabs(b) : fabs(a)) * epsilon);
}

当然,选择取决于上下文,并决定你想要的数字有多相等。

比较浮点数的另一种方法是查看数字的ULP(最后位置的单位)。虽然没有专门处理比较,但“每个计算机科学家都应该知道浮点数”这篇论文是了解浮点数如何工作以及陷阱是什么,包括什么是ULP的很好的资源。

在数值软件中,确实有这样的情况,你需要检查两个浮点数是否完全相等。我就一个类似的问题发表了这篇文章

https://stackoverflow.com/a/10973098/1447411

所以你不能说“CompareDoubles1”是错误的。

我的方法也许不正确,但很有用

将两个浮点数都转换为字符串,然后进行字符串比较

bool IsFlaotEqual(float a, float b, int decimal)
{
    TCHAR form[50] = _T("");
    _stprintf(form, _T("%%.%df"), decimal);


    TCHAR a1[30] = _T(""), a2[30] = _T("");
    _stprintf(a1, form, a);
    _stprintf(a2, form, b);

    if( _tcscmp(a1, a2) == 0 )
        return true;

    return false;

}

也可以做到操作人员超载

我对任何涉及浮点减法的答案都非常谨慎(例如,fabs(a-b) < epsilon)。首先,浮点数在更大的量级上变得更稀疏,在足够大的量级上,当间隔大于时,您可能只需要做a == b。其次,减去两个非常接近的浮点数(因为您正在寻找接近相等的浮点数)正是您得到灾难性抵消的方式。

虽然不能移植,但我认为grom的答案在避免这些问题方面做得最好。