我正在寻找一种优雅的方式来获得数据使用属性访问字典与一些嵌套的字典和列表(即javascript风格的对象语法)。

例如:

>>> d = {'a': 1, 'b': {'c': 2}, 'd': ["hi", {'foo': "bar"}]}

应该以这样的方式访问:

>>> x = dict2obj(d)
>>> x.a
1
>>> x.b.c
2
>>> x.d[1].foo
bar

我想,如果没有递归,这是不可能的,但是有什么更好的方法来获得字典的对象样式呢?


当前回答

如果你的dict来自json.loads(),你可以在一行中将它转换为对象(而不是dict):

import json
from collections import namedtuple

json.loads(data, object_hook=lambda d: namedtuple('X', d.keys())(*d.values()))

请参见如何将JSON数据转换为Python对象。

其他回答

通过PyPI包attrdict可以很容易地得到问题的精确解。关于这个包的一个有趣的事实是,字典可以作为键或属性访问。这就是解决方案

from attrdict import AttrDict

d = {'a': 1, 'b': {'c': 2}, 'd': ["hi", {'foo': "bar"}]}

x = AttrDict(d)

print(x.a, x['a'])
print(x.b.c, x['b']['c'])
print(x.d[1].foo, x['d'][1]['foo'])

输出如下(显然没有错误)-

1 1
2 2
bar bar

注意:它于2019年2月2日首次发布,这意味着在提出这个问题时,这个第三方pypi包还不存在。但是如果有人现在想通过键或属性访问dict值,这个包肯定可以像魔术一样帮助你,只需要一行代码。

我认为字典由数字、字符串和字典组成,大多数时候就足够了。 所以我忽略了元组、列表和其他类型没有出现在字典的最后一个维度的情况。

考虑了继承,结合递归,方便地解决了打印问题,并提供了两种数据查询方式,一种数据编辑方式。

请看下面的例子,这是一个描述学生信息的词典:

group=["class1","class2","class3","class4",]
rank=["rank1","rank2","rank3","rank4","rank5",]
data=["name","sex","height","weight","score"]

#build a dict based on the lists above
student_dic=dict([(g,dict([(r,dict([(d,'') for d in data])) for r in rank ]))for g in group])

#this is the solution
class dic2class(dict):
    def __init__(self, dic):
        for key,val in dic.items():
            self.__dict__[key]=self[key]=dic2class(val) if isinstance(val,dict) else val


student_class=dic2class(student_dic)

#one way to edit:
student_class.class1.rank1['sex']='male'
student_class.class1.rank1['name']='Nan Xiang'

#two ways to query:
print student_class.class1.rank1
print student_class.class1['rank1']
print '-'*50
for rank in student_class.class1:
    print getattr(student_class.class1,rank)

结果:

{'score': '', 'sex': 'male', 'name': 'Nan Xiang', 'weight': '', 'height': ''}
{'score': '', 'sex': 'male', 'name': 'Nan Xiang', 'weight': '', 'height': ''}
--------------------------------------------------
{'score': '', 'sex': '', 'name': '', 'weight': '', 'height': ''}
{'score': '', 'sex': '', 'name': '', 'weight': '', 'height': ''}
{'score': '', 'sex': 'male', 'name': 'Nan Xiang', 'weight': '', 'height': ''}
{'score': '', 'sex': '', 'name': '', 'weight': '', 'height': ''}
{'score': '', 'sex': '', 'name': '', 'weight': '', 'height': ''}

更新:在Python 2.6及以上版本中,考虑namedtuple数据结构是否适合您的需求:

>>> from collections import namedtuple
>>> MyStruct = namedtuple('MyStruct', 'a b d')
>>> s = MyStruct(a=1, b={'c': 2}, d=['hi'])
>>> s
MyStruct(a=1, b={'c': 2}, d=['hi'])
>>> s.a
1
>>> s.b
{'c': 2}
>>> s.c
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'MyStruct' object has no attribute 'c'
>>> s.d
['hi']

替代方案(原答案内容)为:

class Struct:
    def __init__(self, **entries):
        self.__dict__.update(entries)

然后,你可以使用:

>>> args = {'a': 1, 'b': 2}
>>> s = Struct(**args)
>>> s
<__main__.Struct instance at 0x01D6A738>
>>> s.a
1
>>> s.b
2

I ended up trying BOTH the AttrDict and the Bunch libraries and found them to be way too slow for my uses. After a friend and I looked into it, we found that the main method for writing these libraries results in the library aggressively recursing through a nested object and making copies of the dictionary object throughout. With this in mind, we made two key changes. 1) We made attributes lazy-loaded 2) instead of creating copies of a dictionary object, we create copies of a light-weight proxy object. This is the final implementation. The performance increase of using this code is incredible. When using AttrDict or Bunch, these two libraries alone consumed 1/2 and 1/3 respectively of my request time(what!?). This code reduced that time to almost nothing(somewhere in the range of 0.5ms). This of course depends on your needs, but if you are using this functionality quite a bit in your code, definitely go with something simple like this.

class DictProxy(object):
    def __init__(self, obj):
        self.obj = obj

    def __getitem__(self, key):
        return wrap(self.obj[key])

    def __getattr__(self, key):
        try:
            return wrap(getattr(self.obj, key))
        except AttributeError:
            try:
                return self[key]
            except KeyError:
                raise AttributeError(key)

    # you probably also want to proxy important list properties along like
    # items(), iteritems() and __len__

class ListProxy(object):
    def __init__(self, obj):
        self.obj = obj

    def __getitem__(self, key):
        return wrap(self.obj[key])

    # you probably also want to proxy important list properties along like
    # __iter__ and __len__

def wrap(value):
    if isinstance(value, dict):
        return DictProxy(value)
    if isinstance(value, (tuple, list)):
        return ListProxy(value)
    return value

参见https://stackoverflow.com/users/704327/michael-merickel的原始实现。

另一件需要注意的事情是,这个实现非常简单,并且没有实现您可能需要的所有方法。您需要根据需要在DictProxy或ListProxy对象上写入这些内容。

我想上传我对这个小范例的看法。

class Struct(dict):
  def __init__(self,data):
    for key, value in data.items():
      if isinstance(value, dict):
        setattr(self, key, Struct(value))
      else:   
        setattr(self, key, type(value).__init__(value))

      dict.__init__(self,data)

它保留导入到类中的类型的属性。我唯一关心的是从解析的字典中覆盖方法。但其他方面似乎很可靠!